冻融砂岩,损伤,多尺度,物理机制,宏-细观结合 ," /> 冻融砂岩,损伤,多尺度,物理机制,宏-细观结合 ,"/> 冻融红砂岩损伤演化多尺度分析

岩土力学 ›› 2022, Vol. 43 ›› Issue (8): 2103-2114.doi: 10.16285/j.rsm.2021.1726

• 基础理论与实验研究 • 上一篇    下一篇

冻融红砂岩损伤演化多尺度分析

张慧梅,王云飞   

  1. 西安科技大学 力学系,陕西 西安 710054
  • 收稿日期:2021-10-14 修回日期:2022-02-12 出版日期:2022-08-11 发布日期:2022-08-17
  • 作者简介:张慧梅,女,1968年生,博士,教授,博士生导师,主要从事寒区岩石冻融损伤理论分析及工程应用方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No. 12172280,No. 42077274,No. 41907259);陕西省自然科学基金重点资助项目(No. 2020JZ-53)。

Multi-scale analysis of damage evolution of freezing-thawing red sandstones

ZHANG Hui-mei, WANG Yun-fei   

  1. Department of Mechanics, Xi'an University of Science and Technology, Xi’an, Shaanxi 710054, China
  • Received:2021-10-14 Revised:2022-02-12 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (12172280, 42077274, 41907259) and the Key Program of Natural Science Foundation of Shaanxi (2020JZ-53).

摘要: 以红砂岩为研究对象,进行冻融循环、CT扫描及力学特性试验,采用图像处理技术结合遗传算法寻优模型实现了0、5、10、20、40 次冻融循环后 CT 扫描图像的去噪、增强、分割及三维重构处理,通过对同一对象跨尺度的损伤识别与对比研究,建立了基于细观损伤的弹性模量劣化预测公式,并从材料细观结构的物理本质诠释了冻融红砂岩宏观力学行为。结果表明:基于图像最大熵值的遗传算法能够快速精确地选取阈值进行图像分割,实现对岩石细观结构中基质和缺陷的识别;随着冻融次数增加,岩石孔隙率上升、孔隙分维下降,细观尺度上呈现出孔隙扩展、数量增多,但结构复杂程度下降的演化行为;传统方法以有效承载面积、弹性模量为度量基准定义的宏、细观损伤变量未能全面考虑损伤物理机制和材料内部结构信息,宏细观损伤演化曲线差异较大;基于2种物理机制定义细观损伤变量和考虑岩石天然损伤定义宏观损伤变量,实现了损伤的宏-细观结合。最后通过冻融循环过程中细观结构演化与宏观力学响应之间的关系,提出了弹性模量劣化预测公式,并分析冻融砂岩孔隙大小及孔隙结构形态变化在损伤过程中占据的不同主导作用,根据细观结构的物理机制解释宏观砂岩冻融破坏的力学机制。

关键词: 冻融砂岩')">

冻融砂岩, 损伤, 多尺度, 物理机制, 宏-细观结合

Abstract: We take red sandstone as the research object and apply the freeze-thaw cycles, CT scans and mechanical properties experiments. We use image processing technology combined with genetic algorithm optimization model to achieve the denoise, enhancement, segmentation and three-dimensional reconstruction of CT scan images after 0, 5, 10, 20, and 40 freeze-thaw cycles. With the damage identification and comparative study of the same object across scales, we established a prediction formula of elastic modulus deterioration based on mesoscopic damage. Therefore, the macroscopic mechanical behavior of freeze-thaw red sandstones can be interpreted from the physical nature of the material meso-structure. The results show that genetic algorithm based on image maximum entropy can quickly and accurately select the threshold for image segmentation, and achieve the recognition of matrix and defects in rock meso-structure. With the increase of freezing and thawing cycles, the porosity of rock increases, and the fractal dimension of pore decreases. On the meso-scale, the evolution shows that the pores expand and the number increases, but the structural complexity decreases. The macroscopic and mesoscopic damage variables defined by the traditional methods are based on the effective bearing area and elastic modulus, and they fail to fully consider the damage physical mechanism and the internal structure information of the material. The damage evolution curves are different. Based on the two physical mechanisms, we define the meso-damage variable and the macro-damage variable that considers the natural rock damage, which achieves the combination of macroscopic and mesoscopic damages. Finally, according to the relationship between meso-structure evolution and macroscopic mechanical response in the process of freeze-thaw cycles, we propose a prediction formula of elastic modulus degradation, and analyze the different dominant roles of pore size and pore structure morphology through the damage process. We interpret the mechanical mechanism of macroscopic sandstone freeze-thaw damage based on the meso-structure physical mechanisms.

Key words: freeze-thaw sandstone, damage, multi-scale, physical mechanism, macro-meso combination

中图分类号: 

  • TU 454
[1] 侯永强, 尹升华, 杨世兴, 张敏哲, 刘洪斌, . 动态荷载下胶结充填体力学响应及能量 损伤演化过程研究[J]. 岩土力学, 2022, 43(S1): 145-156.
[2] 杨科, 张寨男, 池小楼, 吕鑫, 魏祯, 刘文杰, . 循环载荷下含水砂岩裂纹演化与损伤特征试验研究[J]. 岩土力学, 2022, 43(7): 1791-1802.
[3] 周福川, 唐红梅, 王林峰. 缓倾角塔柱状危岩压裂损伤-突变失稳预测[J]. 岩土力学, 2022, 43(5): 1341-1352.
[4] 范杰, 朱星, 胡桔维, 唐垚, 贺春蕾, . 基于3D-DIC的砂岩裂纹扩展及损伤监测试验研究[J]. 岩土力学, 2022, 43(4): 1009-1019.
[5] 刘云贺, 王琦, 宁致远, 孟霄, 董静, 杨迪雄, . 考虑损伤的平行黏结接触模型开发及 其参数影响分析[J]. 岩土力学, 2022, 43(3): 615-624.
[6] 郑文红, 施天威, 潘一山, 罗浩, 吕祥锋, . 含水率对岩石电荷感应信号影响规律研究[J]. 岩土力学, 2022, 43(3): 659-668.
[7] 许健, 武智鹏, 陈辉, . 干湿循环效应下玄武岩纤维加筋黄土 三轴剪切力学行为研究[J]. 岩土力学, 2022, 43(1): 28-36.
[8] 张超, 杨楚卿, 白允. 岩石类脆性材料损伤演化分析及其模型方法研究[J]. 岩土力学, 2021, 42(9): 2344-2354.
[9] 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤 本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902.
[10] 贾蓬, 杨其要, 刘冬桥, 王述红, 赵永, . 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578.
[11] 李欣慰, 姚直书, 黄献文, 刘之喜, 赵翔, 穆克汉, . 循环加卸载下砂岩变形破坏特征与能量演化研究[J]. 岩土力学, 2021, 42(6): 1693-1704.
[12] 马秋峰, 刘志河, 秦跃平, 田静, 王树立, . 基于能量耗散理论的岩石塑性-损伤本构模型[J]. 岩土力学, 2021, 42(5): 1210-1220.
[13] 刘新荣, 许彬, 周小涵, 谢应坤, 何春梅, 黄俊辉, . 软弱层峰前循环剪切宏细观累积损伤机制研究[J]. 岩土力学, 2021, 42(5): 1291-1303.
[14] 刘杰, 张瀚, 王瑞红, 王芳, 何卓文, . 冻融循环作用下砂岩层进式损伤劣化规律研究[J]. 岩土力学, 2021, 42(5): 1381-1394.
[15] 赵奎, 冉珊瑚, 曾鹏, 杨道学, 腾天野, . 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学, 2021, 42(4): 899-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .