岩土力学 ›› 2023, Vol. 44 ›› Issue (4): 1044-1052.doi: 10.16285/j.rsm.2022.0606

• 基础理论与实验研究 • 上一篇    下一篇

随钻跟管桩钻孔卸荷与后注浆效应的试验研究

李波1, 2,唐孟雄1,胡贺松3,刘春林3,凌造1,苏定立3,侯振坤3   

  1. 1. 广州建筑股份有限公司,广东 广州 510030;2. 华南理工大学 土木与交通学院,广东 广州 510641; 3. 广州市建筑科学研究院集团有限公司,广东 广州 510440
  • 收稿日期:2022-04-26 接受日期:2022-08-03 出版日期:2023-04-18 发布日期:2023-04-28
  • 通讯作者: 唐孟雄,男,1964年生,博士,教授级高级工程师,主要从事岩土工程与施工技术方面的研究。E-mail: tmx@gibs.com.cn E-mail: liboliru2@163.com
  • 作者简介:李波,男,1989年生,博士,高级工程师,主要从事岩土工程与施工技术方面的研究
  • 基金资助:
    国家自然科学基金(No.51908225);中国博士后科学基金(No.2021M690784);广州市建筑集团有限公司科技计划项目(No.[2021]-KJ041,No.[2020]-KJ002,No.[2021]-KJ040,No.[2022]-KJ007);广州建科院科技计划项目(No.2021Y-KJ04)

Experimental study on unloading and grouting effects of DPC pipe piles

LI Bo1, 2, TANG Meng-xiong1, HU He-song3, LIU Chun-lin3, LING Zao1, SU Ding-li3, HOU Zhen-kun3   

  1. 1. Guangzhou Construction Engineering Co., Ltd., Guangzhou, Guangdong 510030, China; 2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510641, China; 3. Guangzhou Institute of Building Science Co., Ltd., Guangzhou, Guangdong 510440, China
  • Received:2022-04-26 Accepted:2022-08-03 Online:2023-04-18 Published:2023-04-28
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51908225), the China Postdoctoral Science Foundation (2021M690784), Science and Technology Planning Project of the Guangzhou Municipal Construction Group ([2021]-KJ041, [2020]-KJ002, [2021]-KJ040, [2022]-KJ007) and Science and Technology Planning Project of Guangzhou Institute of Science and Technology (2021Y-KJ04).

摘要: 为了克服管桩施工的挤土效应,研发了钻进成孔、同步沉桩和后注浆的嵌岩非挤土大直径随钻跟管桩。通过足尺寸原位试验,测试了钻孔沉桩和桩侧注浆施工引起的桩周土体变形及压力变化情况,分析了钻孔卸荷和后注浆效应沿水平方向和深度方向的变化规律,揭示了随钻跟管桩施工对桩周土体的扰动。此外,基于圆孔收缩理论提出了随钻跟管桩钻孔卸荷变形预估方法。研究表明,随钻跟管桩的施工扰动主要表现为钻孔卸荷效应和桩侧后注浆效应,钻孔卸荷使孔壁收缩3.5~ 18.9 mm,后续的桩侧注浆使收缩变形恢复了28%~50%,部分消除了钻孔卸荷效应的影响。修正后的圆孔收缩理论,可预估钻孔卸荷引起的桩周土体径向位移及压力变化。与锤击/静压管桩及中掘法管桩的挤土效应相比,随钻跟管桩的钻孔卸荷效应小,在城市建筑和管线密集区域应用更具优势。

关键词: 随钻跟管桩, 钻孔卸荷, 后注浆, 挤土效应, 足尺寸原位试验

Abstract: To overcome the squeezing effect of pipe pile construction, a drilling with a prestressed concrete (DPC) pipe pile with drilling into hole, synchronous sinking pile and post-grouting was developed. It was a type of the rock-socketed and non-squeezed pipe pile. In this paper, the deformation and pressure change in the soil around the pile, caused by the drilling unloading and side post-grouting, were tested by in-situ tests. Based on test results, the change rules of unloading and grouting effects along the horizontal and vertical directions were analyzed, revealing the disturbances of soil around the pile. Moreover, a method for estimating the disturbances of DPC pipe pile construction was developed based on the circular hole shrinkage theory. The study shows that the disturbances mainly manifests unloading and grouting effects. Drilling unloading causes a shrinkage of the hole wall of 3.5−18.9 mm, and subsequent pile side post-grouting restore the shrinkage deformation by 28% to 50%, partially eliminating the impact of drilling unloading effect. In addition, the deformation and pressure change of soil around the pile caused by drilling unloading can be estimated by the modified circular hole shrinkage theory. Compared with the squeezing effect of displacement piles, the unloading effect of DPC pipe piles is significantly smaller, more advantages in application in urban areas with dense buildings and pipelines.

Key words: DPC pipe piles, drilling unloading, post grouting, squeeze effect, full-size in-situ test

中图分类号: 

  • TU473
[1] 丁扬, 熊晔, 陈孜孜, 吴晓寒, 王小波, . 灌注桩动力特性试验与数值模拟研究[J]. 岩土力学, 2022, 43(S2): 640-646.
[2] 侯振坤, 唐孟雄, 胡贺松, 黎剑华, 张树文, 徐晓斌, 刘春林, . 随钻跟管桩竖向承载性能原位试验 与室内物理模拟试验对比研究[J]. 岩土力学, 2021, 42(2): 419-429.
[3] 刘春林, 唐孟雄, 胡贺松, 岳云鹏, 侯振坤, 陈航, . 考虑桩底沉渣的随钻跟管桩竖向承载 特性模型试验研究[J]. 岩土力学, 2021, 42(1): 177-185.
[4] 胡贺松, 陈晓斌, 唐孟雄, 廖湘英, 肖源杰, . 随钻跟管桩桩-土接触面作用机制 大型直剪试验研究[J]. 岩土力学, 2018, 39(12): 4325-4334.
[5] 练继建,马煜祥,王海军,王芃文,蒋杏雨, . 筒型基础在粉质黏土中的静压沉放试验研究[J]. , 2017, 38(7): 1856-1862.
[6] 李永辉,朱 翔,周同和,. 桩端后注浆对大直径灌注桩影响的现场对比试验研究[J]. , 2016, 37(S2): 388-396.
[7] 李永辉 ,王卫东 ,吴江斌,. 桩端后注浆超长灌注桩桩侧极限摩阻力计算方法[J]. , 2015, 36(S1): 382-386.
[8] 叶 飞 ,苟长飞 ,毛家骅 ,杨鹏博 ,陈 治 ,贾 涛,. 黏土地层盾构隧道临界注浆压力计算及影响因素分析[J]. , 2015, 36(4): 937-945.
[9] 梁 禹 ,阳军生 ,王树英 ,曾学艺,. 考虑时变性影响的盾构壁后注浆浆液固结及消散机制研究[J]. , 2015, 36(12): 3373-3380.
[10] 肖勇杰,陈福全,林良庆. 灌注桩套管高频振动贯入过程中挤土效应研究[J]. , 2015, 36(11): 3268-3274.
[11] 朱 楠,崔自治. 桩端后注浆对单桩承载性状的作用效应研究[J]. , 2014, 35(S2): 267-271.
[12] 张龙云 ,张强勇 ,李术才 ,薛翊国 ,王者超 ,杨尚阳 , . 基于流固耦合的围岩后注浆对大型水封石油洞库水封性影响分析[J]. , 2014, 35(S2): 474-480.
[13] 杨 旭,陈 飞,练继建,王海军. 考虑挤土效应的筒型基础沉放阻力数值分析及试验验证[J]. , 2014, 35(12): 3585-3591.
[14] 李国维,边圣川,陆晓岑 ,杨 涛 ,雷国辉 . 软基路堤拓宽静压PHC管桩挤土效应现场试验[J]. , 2013, 34(4): 1089-1096.
[15] 黄大维 ,周顺华,刘重庆,陈天文. 护壁套管钻孔灌注桩微扰动施工分析[J]. , 2013, 34(4): 1103-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 乾增珍,鲁先龙,丁士君. 风积沙地基斜柱基础上拔水平力组合荷载试验[J]. , 2009, 30(1): 257 -260 .
[2] 李新平,代翼飞,刘金焕,曾 明,刘立胜,张开广. 钢管爆炸破坏的数值模拟分析与试验研究[J]. , 2009, 30(S1): 5 -9 .
[3] 曹文贵,赵 衡,张永杰,张 玲. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. , 2011, 32(3): 647 -654 .
[4] 王应铭,李肖伦. 郑西客专陕西段路基湿陷性黄土地基处理简介[J]. , 2009, 30(S2): 283 -286 .
[5] 黄小兰 ,杨春和 ,陈 锋 ,李银平 ,李应芳. 潜江地区层状盐岩天然气储库密闭性评价研究[J]. , 2011, 32(5): 1473 -1478 .
[6] 许福乐 ,王恩元 ,宋大钊 ,宋晓艳 ,魏明尧. 煤岩破坏声发射强度长程相关性和多重分形分布研究[J]. , 2011, 32(7): 2111 -2116 .
[7] 牛 雷,姚仰平,崔文杰,万 征. 超固结非饱和土本构关系的三维化方法[J]. , 2011, 32(8): 2341 -2345 .
[8] 萧富元 ,王建力 ,邵厚洁. 深埋脆性岩石力学参数评估与变形特性探讨[J]. , 2011, 32(S2): 109 -114 .
[9] 刘奉银 ,张 昭 ,周 冬 ,赵旭光 ,朱 良. 密度和干湿循环对黄土土-水特征曲线的影响[J]. , 2011, 32(S2): 132 -136 .
[10] 张先伟 ,王常明 ,李军霞 . 软土固结蠕变特性及机制研究[J]. , 2011, 32(12): 3584 -3590 .