岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2611-2618.doi: 10.16285/j.rsm.2022.1428

• 基础理论与实验研究 • 上一篇    下一篇

不同高孔隙水压砂岩三轴压缩力学特性及多向破裂机制

傅翔1, 2,黄平1,谢强3,班宇鑫4,苏焓1   

  1. 1. 重庆交通大学 河海学院,重庆 400074;2. 长江科学院 水利部岩土力学与工程重点实验室,湖北 武汉 430010; 3. 重庆大学 土木工程学院,重庆 400044;4. 重庆科技学院 建筑工程学院,重庆 401331
  • 收稿日期:2022-09-14 接受日期:2023-01-05 出版日期:2023-09-11 发布日期:2023-09-02
  • 通讯作者: 谢强,男,1975年生,博士,教授,博士生导师,主要从事岩石力学理论与试验研究工作。E-mail: xieqiang2000@163.com E-mail:fmsx2000@163.com
  • 作者简介:傅翔,男,1982年生,博士,副教授,硕士生导师,主要从事岩石力学试验研究工作。
  • 基金资助:
    国家自然科学基金项目(No.51879014,No.51927815);重庆市研究生科研创新项目(No.CYS21351)

Triaxial compression mechanical properties and multidirectional fracture mechanism of sandstone under different pore water pressures

FU Xiang1, 2, HUANG Ping1, XIE Qiang3, BAN Yu-xin4, SU Han1   

  1. 1. College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of the Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China; 3. School of Civil Engineering, Chongqing University, Chongqing 400044, China; 4. School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, China
  • Received:2022-09-14 Accepted:2023-01-05 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51879014, 51927815) and the Research and Innovation Program for Graduate Students in Chongqing (CYS21351).

摘要: 高坝水库蓄水后,坝基及库岸岩体水压环境改变,易诱发岸坡失稳、坝体垮塌等工程问题。为探究不同恒定水压对坝基裂隙岩体作用差异与机制,开展了带初始损伤砂岩不同高恒定孔隙水压三轴压缩试验研究,同时结合CT与电镜扫描对其多向破裂机制进行了分析。试验结果表明:(1)在围压为80 MPa条件下,孔隙水压越大,砂岩脆性越强,峰值强度越低,体积扩容应力越小,孔隙水压由10 MPa增至50 MPa,峰值强度降低33%。(2)孔隙水压不同,砂岩内部劣化范围和劣化效果差异显著,表现为砂岩试件破裂面形式多样、方向各异。CT扫描显示,随着孔隙水压增大,劣化作用由试件中部向两端扩散,水压−围压比小于25.0%,孔隙水压劣化作用主要集中在试件中部约1/3范围,水压−围压比大于62.5%,孔隙水压对整个试件均有明显劣化作用。(3)电镜扫描发现,随着孔隙水压增加,砂岩细观颗粒结构由剪切滑移破坏向剪切断裂破坏转变,砂岩微观晶体结构由菜花状向米粒状转变。宏观破坏模式由塑性破坏向脆性破坏转变,形成多向破裂面,与孔隙水压作用下细观结构中细颗粒不均匀堆积和大颗粒断裂有关,其中多向破裂面形成与其微观晶体结构抗剪强度直接相关。

关键词: 三轴压缩试验, 水?岩耦合, 孔隙水压, 黏结软化, 多向破裂面

Abstract: After the impoundment of a high dam reservoir, the water pressure environment of the rock masses in dam base and reservoir bank changes, which may easily induce engineering problems such as bank slope instability and dam collapse. In order to investigate the influences of different constant water pressures on the rock mass of dam base, triaxial compression tests were conducted on sandstone with initial damage under different high constant porewater pressures, and the multidirectional fracture mechanism was analyzed by combining computed tomography (CT) and scanning electron microscopy (SEM). The test results show that: (1) Under the confining pressure of 80 MPa, the greater the pore water pressure, the more brittle the sandstone, the lower the peak strength, and the smaller the volume expansion stress. The pore water pressure increases from 10 MPa to 50 MPa, and the peak strength decreases by 33%. (2) Under different pore water pressures, there are significant differences in sandstone internal deterioration range and deterioration effect as the fracture surfaces of sandstone specimens have various forms and directions. Due to CT scaning results, with the increase in pore water pressure, the deterioration effect spreads from the middle of the specimen to both ends. When the ratio of the water pressure to the confining pressure is less than 25.0%, the deterioration of pore water pressure is mainly concentrated in the middle of the specimen. When the ratio of the water pressure to the confining pressure is larger than 62.5%, the pore water pressure has obvious deterioration effect on the whole specimen. (3) The SEM test reveals that with the increase in pore water pressure, the microgranular structure of sandstone changes from shear slip failure to shear fracture failure, and the microcrystalline structure of sandstone changes from cauliflower to rice granules. The macroscopic failure mode changes from plastic failure to brittle failure, and the multidirectional fracture plane is formed, which is related to the migration of fine particles and the fracture of large particles in the meso-particle structure under pore water pressure. The formation of the multidirectional fracture plane is directly related to the uneven accumulation of the microscopic crystal structure.

Key words: triaxial compression test, water?rock coupling, pore water pressure, bond softening, multidirectional fracture surface

中图分类号: 

  • TU411
[1] 李尧, 李嘉评. 复杂初始应力状态下松砂多向循环单剪特性[J]. 岩土力学, 2023, 44(9): 2555-2565.
[2] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[3] 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248.
[4] 赵津桥, 丁选明, 刘汉龙, 欧强, 蒋春勇, . 珊瑚砂振冲密实加固响应室内模型试验研究[J]. 岩土力学, 2023, 44(8): 2327-2336.
[5] 杨奇, 王晓雅, 聂如松, 陈琛, 陈缘正, 徐方, . 间歇循环荷载作用下饱和砂土累积塑性变形及孔压特性研究[J]. 岩土力学, 2023, 44(6): 1671-1683.
[6] 郭景琢, 郑刚, 赵林嵩, 潘军, 张宗俊, 周强, 程雪松, . 多排孔注浆引起土体变形与孔压规律试验研究[J]. 岩土力学, 2023, 44(3): 896-907.
[7] 陈平山, 吕卫清, 梁小丛, 周红星, 王婧, 马佳钧, . 含细粒珊瑚土抗液化特性试验研究[J]. 岩土力学, 2023, 44(2): 337-344.
[8] 何文, 陈豪, 郑场松, 卢博凯, 王慢慢, . 尾矿渗透破坏及其导波监测试验研究[J]. 岩土力学, 2023, 44(2): 415-424.
[9] 张雷, 吕延栋, 王炳辉, 金丹丹, 竺明星, 方晨, . 絮凝−真空−电渗联合加固滩涂软土的模型试验研究[J]. 岩土力学, 2022, 43(9): 2383-2390.
[10] 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398.
[11] 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549.
[12] 杜宇, 刘松玉, 祝刘文, 邹海峰, 蔡国军, . 基于孔压静力触探试验的水运工程土分类方法研究[J]. 岩土力学, 2022, 43(5): 1353-1363.
[13] 李新明, 贾亚垒, 王志留, 尹松. 原状膨胀土剪切力学特性的应变速率效应[J]. 岩土力学, 2022, 43(12): 3327-3334.
[14] 苏新斌, 廖晨聪, 刘世奥, 张璐璐, . 基于预制滑动面的饱和黏土−结构物界面强度特性 三轴试验研究[J]. 岩土力学, 2022, 43(10): 2852-2860.
[15] 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .