岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2611-2618.doi: 10.16285/j.rsm.2022.1428
傅翔1, 2,黄平1,谢强3,班宇鑫4,苏焓1
FU Xiang1, 2, HUANG Ping1, XIE Qiang3, BAN Yu-xin4, SU Han1
摘要: 高坝水库蓄水后,坝基及库岸岩体水压环境改变,易诱发岸坡失稳、坝体垮塌等工程问题。为探究不同恒定水压对坝基裂隙岩体作用差异与机制,开展了带初始损伤砂岩不同高恒定孔隙水压三轴压缩试验研究,同时结合CT与电镜扫描对其多向破裂机制进行了分析。试验结果表明:(1)在围压为80 MPa条件下,孔隙水压越大,砂岩脆性越强,峰值强度越低,体积扩容应力越小,孔隙水压由10 MPa增至50 MPa,峰值强度降低33%。(2)孔隙水压不同,砂岩内部劣化范围和劣化效果差异显著,表现为砂岩试件破裂面形式多样、方向各异。CT扫描显示,随着孔隙水压增大,劣化作用由试件中部向两端扩散,水压−围压比小于25.0%,孔隙水压劣化作用主要集中在试件中部约1/3范围,水压−围压比大于62.5%,孔隙水压对整个试件均有明显劣化作用。(3)电镜扫描发现,随着孔隙水压增加,砂岩细观颗粒结构由剪切滑移破坏向剪切断裂破坏转变,砂岩微观晶体结构由菜花状向米粒状转变。宏观破坏模式由塑性破坏向脆性破坏转变,形成多向破裂面,与孔隙水压作用下细观结构中细颗粒不均匀堆积和大颗粒断裂有关,其中多向破裂面形成与其微观晶体结构抗剪强度直接相关。
中图分类号:
[1] | 李尧, 李嘉评. 复杂初始应力状态下松砂多向循环单剪特性[J]. 岩土力学, 2023, 44(9): 2555-2565. |
[2] | 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666. |
[3] | 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248. |
[4] | 赵津桥, 丁选明, 刘汉龙, 欧强, 蒋春勇, . 珊瑚砂振冲密实加固响应室内模型试验研究[J]. 岩土力学, 2023, 44(8): 2327-2336. |
[5] | 杨奇, 王晓雅, 聂如松, 陈琛, 陈缘正, 徐方, . 间歇循环荷载作用下饱和砂土累积塑性变形及孔压特性研究[J]. 岩土力学, 2023, 44(6): 1671-1683. |
[6] | 郭景琢, 郑刚, 赵林嵩, 潘军, 张宗俊, 周强, 程雪松, . 多排孔注浆引起土体变形与孔压规律试验研究[J]. 岩土力学, 2023, 44(3): 896-907. |
[7] | 陈平山, 吕卫清, 梁小丛, 周红星, 王婧, 马佳钧, . 含细粒珊瑚土抗液化特性试验研究[J]. 岩土力学, 2023, 44(2): 337-344. |
[8] | 何文, 陈豪, 郑场松, 卢博凯, 王慢慢, . 尾矿渗透破坏及其导波监测试验研究[J]. 岩土力学, 2023, 44(2): 415-424. |
[9] | 张雷, 吕延栋, 王炳辉, 金丹丹, 竺明星, 方晨, . 絮凝−真空−电渗联合加固滩涂软土的模型试验研究[J]. 岩土力学, 2022, 43(9): 2383-2390. |
[10] | 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398. |
[11] | 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549. |
[12] | 杜宇, 刘松玉, 祝刘文, 邹海峰, 蔡国军, . 基于孔压静力触探试验的水运工程土分类方法研究[J]. 岩土力学, 2022, 43(5): 1353-1363. |
[13] | 李新明, 贾亚垒, 王志留, 尹松. 原状膨胀土剪切力学特性的应变速率效应[J]. 岩土力学, 2022, 43(12): 3327-3334. |
[14] | 苏新斌, 廖晨聪, 刘世奥, 张璐璐, . 基于预制滑动面的饱和黏土−结构物界面强度特性 三轴试验研究[J]. 岩土力学, 2022, 43(10): 2852-2860. |
[15] | 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524. |
|