›› 2010, Vol. 31 ›› Issue (2): 427-432.

• 基础理论与实验研究 • 上一篇    下一篇

长江漫滩相软土结构性特征及其工程效应分析

刘维正,石名磊   

  1. 东南大学 交通学院,南京 210096
  • 收稿日期:2008-09-23 出版日期:2010-02-10 发布日期:2010-03-24
  • 作者简介:刘维正,男,1982年生,博士研究生,主要研究方向为软土工程特性。
  • 基金资助:

    江苏省交通科学研究计划项目(No. 06y14,No. 06y15)。

Structural characteristic and engineering effect analysis of Yangtze River backswamp soft soil

LIU Wei-zheng, SHI Ming-lei   

  1. School of Transportation, Southeast University, Nanjing 210096, China
  • Received:2008-09-23 Online:2010-02-10 Published:2010-03-24

摘要:

采用自由活塞薄壁取土器从地表至深度30 m取得不扰动原状土样,通过室内的固结压缩试验,并结合现场CPTU原位测试,利用重塑土的压缩与强度特性作为描述天然沉积土相应特性的基准框架,探讨了长江漫滩相天然沉积软土的物理力学性质。结果表明,长江漫滩相天然沉积软土具有高位结构性,固结系数Cv在土体屈服后急剧降低,屈服前后有明显的分段特征。同时指出,在静荷载水平相对较低的低路堤结构下,软弱土层沉积过程中形成的固结屈服压力和结构强度对其工程特性的影响相对更加显著。减小对天然沉积土的施工扰动作用、充分利用土结构力学效应、尽可能使地基工作于力学性质良好的屈服前阶段,在实际工程应用中具有重要的现实意义。

关键词: 结构性, 长江漫滩相软土, 低路堤, 工程效应

Abstract:

Free piston thin wall samplers were employed to obtain undisturbed specimens of natural sedimentary soils from ground surface to the depth of 30 m. One-dimensional consolidation compression tests performed on the undisturbed samples, and in-situ piezocone penetration test?CPTU, were adopted to investigate the physical and mechanical behavior of the Yangtze River backswamp soils. And then, intrinsic compression line (ICL) and intrinsic strength line (ISuL) of reconstituted clays were used as a basic frame of reference for describing the corresponding characteristics of natural sedimentary clays. The above results indicate that the Yangtze River backswamp soils have a high level of soil structure; consolidation coefficient Cv shows a rapid decrease after yielding and has obvious features of stages. Another conclusion could be drawn that the consolidation yield pressure and structural strength of natural sedimentary soils have more notable effects on engineering characteristics under lower static load level of the low embankment. Moreover, it's of practical value to decrease the construction disturbance of natural soil and make full use of the structural strength in engineering application.

Key words: structural characteristic, Yangtze River backswamp soft soil, low embankment, engineering effect

中图分类号: 

  • TU 411
[1] 邵生俊, 陈 菲, 邓国华, . 基于平面应变统一强度公式的结构性黄土填料 挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262.
[2] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[3] 张玉伟, 翁效林, 宋战平, 谢永利, . 考虑黄土结构性和各向异性的修正剑桥模型[J]. 岩土力学, 2019, 40(3): 1030-1038.
[4] 褚峰, 张宏刚, 邵生俊, . 陇东Q3结构性黄土压剪损伤本构模型试验研究[J]. 岩土力学, 2019, 40(10): 3855-3870.
[5] 姚志华, 陈正汉, 方祥位, 黄雪峰, . 非饱和原状黄土弹塑性损伤流固耦 合模型及其初步应用 [J]. 岩土力学, 2019, 40(1): 216-226.
[6] 段晓梦,曾立峰, . 非饱和土的承载结构与岩土广义结构性[J]. , 2018, 39(9): 3103-3112.
[7] 王丽琴,邵生俊,赵 聪,鹿忠刚,. 黄土初始结构性对其压缩屈服的影响[J]. , 2018, 39(9): 3223-3228.
[8] 丑亚玲,郏书胜,张庆海,曹 伟,盛 煜,. 考虑结构性的冻融作用对黄土湿陷系数的影响[J]. , 2018, 39(8): 2715-2722.
[9] 姚志华,连 杰,陈正汉,朱元青,方祥位,. 考虑细观结构演化的非饱和Q3 原状黄土弹塑性本构模型[J]. , 2018, 39(5): 1553-1563.
[10] 孙 凯,陈正林,路德春,. 一种考虑黏聚强度的改良土弹塑性本构模型[J]. , 2018, 39(5): 1589-1597.
[11] 刘 笋,蒋明镜,付 昌,朱俊高,. 结构性砂土静力触探试验离散元分析[J]. , 2018, 39(3): 933-942.
[12] 宋 晶,叶冠林,徐永福,孙德安,. 考虑固结历史的结构性软土路基沉降数值模拟[J]. , 2018, 39(3): 1037-1046.
[13] 祝恩阳,李晓强,. 胶结结构性土统一硬化模型[J]. , 2018, 39(1): 112-122.
[14] 陈 波,孙德安,高 游,李 健,. 上海软黏土的孔径分布试验研究[J]. , 2017, 38(9): 2523-2530.
[15] 刘文生,吴作启,梁怀杰,. 南票矿区松散层土体结构性参数试验研究[J]. , 2017, 38(6): 1725-1732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 祝云华,刘新荣,舒志乐. 对“‘深埋隧道开挖围岩失稳突变模型研究’讨论”的答复[J]. , 2009, 30(10): 3215 -3216 .
[2] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[3] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[4] 姚仰平,冯 兴,黄 祥,李春亮. UH模型在有限元分析中的应用[J]. , 2010, 31(1): 237 -245 .
[5] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[6] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283 -2288 .
[7] 刘泉声,胡云华,刘 滨. 基于试验的花岗岩渐进破坏本构模型研究[J]. , 2009, 30(2): 289 -296 .
[8] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[9] 周 扬,周国庆. 土体一维冻结问题温度场半解析解[J]. , 2011, 32(S1): 309 -0313 .
[10] 邢万波 ,周 钟 ,唐忠敏 ,孙 钢. 基于ν-SVR和改进PSO算法的反分析方法及应用[J]. , 2009, 30(S2): 540 -546 .