›› 2015, Vol. 36 ›› Issue (11): 3223-3228.doi: 10.16285/j.rsm.2015.11.025

• Geotechnical Engineering • Previous Articles     Next Articles

Application of modified thin layer element to the analysis of dynamic pile-soil interaction

MIAO Yu, LI Wei, ZHENG Jun-jie, FANG Hui-ming   

  1. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2015-07-18 Online:2015-11-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant No.51378234) and the Fundamental Research Funds for the Central Universities (Grant No.2014YQ008).

Abstract: The material property of soil significantly differs from that of pile, inducing the relative sliding or separation between soil and concrete pile during earthquake. The strong nonlinear contact behavior can directly affect the stress states of pile and soil near the interface, thus affecting the seismic response of superstructure. The real pile-soil interface does have a certain thickness due to the constraint relationship of concrete on pile, and the contact zone of related volumetric law does exist. A user-defined element (UEL) program based on modified Desai thin interface element is developed and then inputted into ABAQUS. In the modification process, Rayleigh damping is added into the interface element to simulate energy dissipation in the process of strong nonlinear contact behavior between soil and pile. Hyperbolic model is adopted in normal and tangential constitutive relation. Certain behavior pattern rules of modified Desai element on pile-soil interface are made to simulate the contact states such as bonding, sliding, separation and reclosing. A fine 3D pile-soil-structure model is developed to improve the effect of the modified Desai’s interface element on the dynamic response of superstructure. The result provides an instructive guideline for engineering design in time-history analysis.

Key words: damping, contact element, secondary development, finite element method, dynamic interaction of pile-soil-structure

CLC Number: 

  • O 242.21
[1] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[2] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[3] RUI Sheng-jie, GUO Zhen, WANG Li-zhong, ZHOU Wen-jie, LI Yu-jie, . Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface [J]. Rock and Soil Mechanics, 2020, 41(1): 78-86.
[4] ZHANG Hai-ting, YANG Lin-qing, GUO Fang, . Solution and analysis of dynamic response for rigid buried pipe in multi-layered soil based on SBFEM [J]. Rock and Soil Mechanics, 2019, 40(7): 2713-2722.
[5] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[6] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[7] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[8] CUI Chun-yi, MENG Kun, WU Ya-jun, MA Ke-yan, LIANG Zhi-meng, . Dynamic impedance for vertical vibration of a single pile in axisymmetrically surrounding soil considering radial inhomogeneity [J]. Rock and Soil Mechanics, 2019, 40(2): 570-579.
[9] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[10] XU Zi-gang, DU Xiu-li, XU Cheng-shun, ZHANG Chi-yu, JIANG Jia-wei. Comparison of determination methods of site Rayleigh damping coefficients in seismic responses analysis of underground structures [J]. Rock and Soil Mechanics, 2019, 40(12): 4838-4847.
[11] WANG Dong-yong, CHEN Xi, YU Yu-zhen, LÜ Yan-nan, . Ultimate bearing capacity analysis of shallow strip footing based on second- order cone programming optimized incremental loading finite element method [J]. Rock and Soil Mechanics, 2019, 40(12): 4890-4896.
[12] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[13] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[14] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[15] ZHANG Wei, LI Ya, ZHOU Song-wang, JIANG Zheng-bo, WU Fei, LIANG Wen-zhou,. Experimental research on cyclic behaviors of clay in the northern region of South China Sea [J]. , 2018, 39(7): 2413-2423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[8] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .
[9] JIN Jie-fang , LI Xi-bing , YIN Zhi-qiang , ZOU Yang. A method for defining rock damage variable by wave impedance under cyclic impact loadings[J]. , 2011, 32(5): 1385 -1393 .
[10] ZHOU Yan-jun , GENG Ying-chun , WANG Gui-bin , TANG Hong-lin , LI Zu-kui. Testing and analyzing rock mechanical characteristics for deep formation[J]. , 2011, 32(6): 1625 -1630 .