›› 2015, Vol. 36 ›› Issue (S1): 247-252.doi: 10.16285/j.rsm.2015.S1.042

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Centrifuge model test on suction caisson foundation in soft clay subjected to lateral loads

ZHU Bin1, 2, YING Pan-pan1, 2, XING Yue-long3   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering of Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou , Zhejiang 310058, China; 3. China Energy Engineering Group Co., Ltd., Zhejiang Electric Power Design Institute, Hangzhou, Zhejiang 310012, China
  • Received:2015-03-10 Online:2015-07-11 Published:2018-06-14

Abstract: The foundations of power transmission towers and offshore wind turbines are prone to huge overturning moment loading from the super structure; therefore the overturning bearing capacity is crucial for the design of such foundations. To investigate the overturning bearing capacity of suction caisson foundation, four centrifuge model tests including a displacement controlled cyclic loading test, a displacement maintained loading test, a load controlled cyclic loading test and a monotonic loading test were carried out in saturated soft clay. The test results show that the instantaneous rotation center of model caisson can be simplified to be at the depth of about four fifths of the skirt length right below the lid center, when the ultimate capacity was reached. When the amplitude of the cyclic moment is smaller than three-fifths of the bearing capacity moment, the rotation of the caisson cease to accumulate, and gradually become stable. The stiffness of the soil-structure interaction significantly softened under cyclic loading, and a threshold of cyclic degradation factor t = 0.15 can be obtained from the peak stiffness curves of the caisson. The moment-rotation curve of peak value of maintaining tests is universally quite in accordance with that of monotonic loading test. The capacity of the model caisson corresponding to the moment-rotation curve of the valley values is much lower than that corresponding to the moment-rotation curve of the peak values in maintaining tests, and a 30%-40% reduction is needed when considering the maintaining overturning capacity of the caisson foundation in design.

Key words: centrifuge model test, suction caisson foundation, overturning capacity, cyclic loading, maintaining loading

CLC Number: 

  • TU 443
[1] YANG Zheng-tao, QIN You, WU Qi, , CHEN Guo-xing, . Influence of cyclic loading frequency on liquefaction behaviors of saturated coral sand [J]. Rock and Soil Mechanics, 2023, 44(9): 2648-2656.
[2] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[3] SHI Lei, ZHANG Xi-wei, . Development and application of an ultra-deep drilling core geological environment true triaxial apparatus [J]. Rock and Soil Mechanics, 2023, 44(7): 2161-2169.
[4] HE Jie, GUO Duan-wei, SONG De-xin, LIU Meng-xin, ZHANG Lei, WEN Qi-feng, . Dynamic response and characteristics of tapered rigid core composite cement-soil piles under cyclic loading [J]. Rock and Soil Mechanics, 2023, 44(5): 1353-1362.
[5] WANG Yuan-zhan, GONG Xiao-long, WANG Xuan, CHEN Yan-ping, XIE Tao, . Study on cyclic cumulative pore pressure and strength evolution of soda residue soil under anisotropic consolidation [J]. Rock and Soil Mechanics, 2023, 44(2): 373-380.
[6] JIANG De-yi, YANG Zhen-yu, FAN Jin-yang, LI Zong-ze, SUO Jin-jie, CHEN Jie. Experimental study of load rate effect of salt rock during loading and unloading [J]. Rock and Soil Mechanics, 2023, 44(2): 403-414.
[7] ZHUANG Xin-shan, ZHOU Rong, ZHOU Mu-kai, TAO Gao-liang, JIN He-yi. Influence of pore solution on cumulative deformation and damping ratio of expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S2): 1-10.
[8] LIU Han-xiang, BIE Peng-fei, LI Xin, WEI Ying-song, WANG Ming-xuan, . Mechanical properties and energy dissipation characteristics of phyllite under triaxial multi-stage cyclic loading and unloading conditions [J]. Rock and Soil Mechanics, 2022, 43(S2): 265-274.
[9] LI Shui-jiang, TONG Yan-guang, WANG Jun, YING Meng-jie, LIU Fei-yu, . Cyclic shear properties of gravel-geogrid interface under bidirectional cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S2): 291-298.
[10] LUO Wei-ping, YUAN Da-jun, JIN Da-long, LU Ping, CHEN Jian, GUO Hai-peng, . Centrifugal model test on relationship between support pressure of shield tunnel face and ground deformation in water rich sand strata [J]. Rock and Soil Mechanics, 2022, 43(S2): 345-354.
[11] WANG Lei, ZHANG Li-ting, SHEN Si-dong, XU Yong-fu, XIA Xiao-he, . Axisymmetric consolidation characteristics for unsaturated soils under piece-wise cyclic load [J]. Rock and Soil Mechanics, 2022, 43(S1): 203-212.
[12] MENG Fan-li, LOU Zhen-zhen, GE Wei, . Experimental study on dynamic characters of unloading silt under long-term cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 383-388.
[13] XU Long-fei, WENG Xiao-lin, WONG Henry, FABBRI Antonin, ZHU Tan-tan . Development and application of a temperature-humidity controlled triaxial apparatus for earth materials [J]. Rock and Soil Mechanics, 2022, 43(8): 2327-2336.
[14] YANG Ke, ZHANG Zhai-nan, CHI Xiao-lou, LÜ Xin, WEI Zhen, LIU Wen-jie, . Experimental study on crack evolution and damage characteristics of water bearing sandstone under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(7): 1791-1802.
[15] ZHANG Qiang, WANG Jun-bao, SONG Zhan-ping, FENG Shi-jin, ZHANG Yu-wei, ZENG Tao, . Microstructure variation and empirical fatigue model of salt rock under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(4): 995-1008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[3] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[4] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[5] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[6] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[7] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[8] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[9] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .
[10] XIA Yan-hua , BAI Shi-wei . Study of building 3D complex strata model based on level set methods and application to underground engineering[J]. , 2012, 33(5): 1445 -1450 .