›› 2015, Vol. 36 ›› Issue (S2): 29-36.doi: 10.16285/j.rsm.2015.S2.004

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Meso-research on mechanical properties of rock mass affected by joint connectivity rate

ZHOU Yu1, ZHANG Huai-jing2, WU Shun-chuan1, GAO Yong-tao1, SUN Hao1, YE Qiang2, LI Jiang1   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine,University of Science and Technology Beijing, Beijing 100083,China;2. School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044; 3. School of Engineering,University of Kansas,KS 66045-7609,USA
  • Received:2014-07-01 Online:2015-08-31 Published:2018-06-14

Abstract: By using equivalent rock mass(ERM) technique, the ERM models containing diverse joint dip angle and connectivity rate are constructed, in which the joint and rock block are represented by smooth joint model and bonded particle model, respectively. Combining with test result, the effect of joint connectivity rate on strength, fracture mechanism and energy evolution of rock mass under the condition of uniaxial compression, is quantitatively investigated from meso-mechanical viewpoint. Research shows that when an angle presents between joint and load direction, rock mass behaves as the tendency of coalescence failure along the connecting direction of rock bridge. Especially with joint dip angle α of 30° and connectivity rate L of 0.8, rock mass exhibits composite coalescence failure of rock bridge. Under the condition of the joint dip angle α of 30°, with increase of joint connectivity rate, rock mass exhibits the following mechanical behaviors: (1) The peak compressive strength continually decreases. (2) The amount of microcracks decreases, but the ratio of tensile microcracks increases. Meanwhile, microcracks gradually generate on the rock bridge line between different level joint tip. (3) The occurrence time of acoustic emission (AE) event during the entire loading stage gradually disperses. The amount of AE event as well as the distribution range, mean value and standard deviation of fracture magnitude decreases. (4) The peak strain energy as well as the post-peak change rate of strain and kinetic energy reduces. The growth of post-peak frictional energy slows down. The required work supplied by exterior to destroy the specimen reduces.

Key words: joint, connectivity rate, rock mass, mechanical properties, meso

CLC Number: 

  • TU 452
[1] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[2] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[3] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[4] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[5] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[6] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[7] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[8] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[9] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[10] DING Zhen-jie, ZHENG Jun, LÜ Qing, DENG Jian-hui, TONG Meng-sheng, . Discussion on calculation methods of quality index of slope engineering rock mass in Standard for engineering classification of rock mass [J]. Rock and Soil Mechanics, 2019, 40(S1): 275-280.
[11] CUI Xue-jie, YAN E-chuan, CHEN Wu. Cluster analysis of discontinuity occurrence of rock mass based on improved genetic algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 374-380.
[12] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[13] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[14] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[15] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .