›› 2016, Vol. 37 ›› Issue (5): 1497-1502.doi: 10.16285/j.rsm.2016.05.034

• Numerical Analysis • Previous Articles     Next Articles

Numerical simulation of mesoscopic seepage field of soil CT scanned slice based on lattice Boltzmann method

CUI Guan-zhe, SHEN Lin-fang, WANG Zhi-liang, TANG Zheng-guang, XU Ze-min   

  1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
  • Received:2014-05-22 Online:2016-05-10 Published:2018-06-09
  • Supported by:

    This research was supported by the Personnel Training Foundation of Kunming University of Science and the Technology (KKSY201306023, KKSY201306142), the Key Program of Joint Fund of Yunnan Province-the National Natural Science Foundation of China (U1033601).

Abstract: Mesoscopic seepage field of real soil is simulated based on lattice Boltzmann method. In this simulation, the basic model D2Q9 is used; and the inlet and outlet boundaries are constructed by setting the non-equilibrium extrapolation format. The soil particles boundary as well as left and right waterproof boundaries are set by the bounce-back format. At first, the data denoted by physical units from experiments are transformed into lattice units. According to data structure generated by CT scanned slices, the corresponding calculation program is applied to simulate mesoscopic seepage field of real soil. Finally, the results of lattice units are transform into physical units once again. The variation of seepage velocity is analyzed; and the whole and partial distributions of seepage field are obtained. The results show that: 1) Seepage velocity U finally reaches a relatively stable figure in pore channels over time. Accurate time T is obtained from the beginning of seepage to the steady-state of seepage. 2) The average seepage velocity gradually decreases along with the negative direction of y axis from the inlet boundary; and it is less than the average seepage velocity in inlet boundary. 3) The quantity of seepage is dominated by the connectivity and pore size of channels. The maximum seepage velocity is concentrated in a narrow channel. The velocity in closed pore channel and pore is zero. Lattice Boltzmann method is effective in simulating two dimensional CT scanned slice and can be used to research the mechanism of real seepage field quantitatively and accurately.

Key words: lattice Boltzmann method, seepage field, 2D scanned slice, numerical simulation

CLC Number: 

  • TU 411

[1] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[2] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[3] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[4] HU Sheng-bin, DU Guo-ping, XU Guo-yuan, ZHOU Tian-zhong, ZHONG You-xin, SHI Chong-qing, . Sonar seepage vector method based on energy measurement and its application [J]. Rock and Soil Mechanics, 2020, 41(6): 2143-2154.
[5] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[6] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
[7] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[8] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[9] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[10] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[11] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[12] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[13] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[14] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[15] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!