›› 2016, Vol. 37 ›› Issue (8): 2222-2230.doi: 10.16285/j.rsm.2016.08.013

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on strength reduction method based on double reduction parameters

YUAN Wei1, 2, 3, LI Xiao-chun3, WANG Wei1, BAI Bing3, WANG Qi-zhi1, CHEN Xiang-jun1   

  1. 1. School of Civil Engineering, Shijiazhuang Railway University, Shijiazhuang, Hebei 050043, China; 2.Hebei Research Institute of Construction and Geotechnical Investigation Co.Ltd., Shijiazhuang, Hebei 050031, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2014-08-31 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Young Scholars of Scientific Research Fund of the Hebei Education Department (QN2015166) and the Natural Science Foundation of Hebei Province (E2013210023).

Abstract: Cohesion and friction angle are reduced by the same amount in the traditional strength reduction method, and the reduction parameter at the critical state of the slope is considered as the safety factor of this slope. Thus, the strength reduction method based on single reduction parameter is defined as equivalent proportional reduction method. For a target slope with the certain slope configuration and rock density, the combination of cohesive and friction coefficient, at which the slope is at the critical state, is not unique. The strength reduction by the same amount is simply one of possible choice, but not necessarily the best one. Based on the above understanding, the - critical state curve is first established under different slopes shapes and rock mass densities; then it is proposed that cohesive and friction coefficient are reduced along the short path from the current coordinate of strength parameter to - critical state curve, and a scheme of matching reduction is proposed; finally, the difference between these two reduction methods is analyzed through three examples. The results show the critical states of equivalent proportional reduction method and double reduction method are not the same, the range of the former is larger than the that of the latter

Key words: strength reduction method, double reduction parameters, equivalent proportional reduction, safety factor, - curve

CLC Number: 

  • TU 457

[1] CAO Jia-qi, WANG Hong-xin, WANG Ping, SUN De-an, . A method for evaluating safety of civil air defense structure based on load structure method and strength reduction method [J]. Rock and Soil Mechanics, 2023, 44(7): 2105-2114.
[2] XIAO Guo-feng. An improved overload limit equilibrium method of rock blocks [J]. Rock and Soil Mechanics, 2023, 44(2): 425-432.
[3] ZHANG Wen-lian, SUN Xiao-yun, CHEN Yong, JIN Shen-yi, . Slope stability analysis method based on compressive strength reduction of rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 607-615.
[4] CHEN Dong, LI Hong-jun, ZHU Kai-bin. Vector sum analysis method for slope stability based on new main sliding trend direction [J]. Rock and Soil Mechanics, 2021, 42(8): 2207-2214.
[5] ZHANG Rui-huan, YE Shuai-hua, TAO Hui. Stability analysis of multistage homogeneous loess slopes by improved limit equilibrium method [J]. Rock and Soil Mechanics, 2021, 42(3): 813-825.
[6] ZHANG Tian-long, ZENG Peng, LI Tian-bin, SUN Xiao-ping, . System reliability analyses of slopes based on active-learning radial basis function [J]. Rock and Soil Mechanics, 2020, 41(9): 3098-3108.
[7] XIAO Ming-qing, XU Chen, . Discussion on stability analysis method of tunnel surrounding rock based on critical stable section [J]. Rock and Soil Mechanics, 2020, 41(5): 1690-1698.
[8] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[9] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[10] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[11] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[12] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
[13] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
[14] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
[15] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .