›› 2017, Vol. 38 ›› Issue (11): 3378-3384.doi: 10.16285/j.rsm.2017.11.038

• Numerical Analysis • Previous Articles     Next Articles

Coupling analysis of water-air two-phase flow in static liquefaction of desaturated loose sand

FANG Zhi1, 2, CHEN Yu-min1, 2, HE Sen-kai1, 2, HE Jia1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2016-12-05 Online:2017-11-10 Published:2018-06-05
  • Supported by:

    This work was supported by the General Program of National Natural Science Foundation of China (51379067).

Abstract: Desaturation is a new method to improve the liquefaction resistance of foundation by decreasing the saturation degree of saturated sand. Based on the coupling simulation method of water-gas two-phase flow reaction and soil skeleton deformation, a two dimensional numerical model is established to simulate the static liquefaction behavior under monotonic loading conditions. Also numerical simulation of undrained triaxial tests are carried out. By comparing the numerical results with the laboratory test results, it is found that the two-phase flow model shows great accuracy in describing the stress-strain relationship, stress path and pore water pressure growth in the static liquefaction process, which verifies the effectiveness of the two-phase flow simulation method. In addition, the saturation degree of desaturated loose sand during loading process increases until a stable value is reached. While the confining pressure is constant, the saturation degree at the end of loading linearly increases with the initial saturation. At the same time, the air in the sand is compressed under loading, which enables the desaturated sand to develop shear shrinkage with undrained condition. When the initial saturation degree of loose sand is reduced from 100% to 94.5%, pore water pressure coefficient B will decrease by 80%, the greatest pore pressure will decrease by 40%-50%, the undrained shear strength will increase by 2.0-2.5 times, and the residual strength can improve by more than 10 times. Therefore, this is the main mechanism of desaturation method to improve the liquefaction resistance, and the matric suction isn’t the main reason for desaturation method to improve the sand shear strength.

Key words: desaturation, two-phase flow, static liquefaction, numerical simulation

CLC Number: 

  • TU 443

[1] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[2] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[3] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[4] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[5] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
[6] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[7] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[8] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[9] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[10] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[11] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[12] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[13] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[14] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[15] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!