Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (11): 3059-3068.doi: 10.16285/j.rsm.2021.0641

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model test study on inclined pull-out bearing characteristics of flat circular anchor in sand

LIN Zhi1, HU Wei1, ZHAO Pu2, CHEN Qiu-nan1, HE Jian-qing1, CHEN Jie3, SHI Dan-da4   

  1. 1. Hunan Province Key Laboratory of Geotechnical Engineering Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 2. Hualu Engineering & Technology Co Ltd, Xi’an, Shaanxi 710000, China; 3. School of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; 4. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
  • Received:2021-04-27 Revised:2021-09-24 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078211, 41772273) and the Natural Science Foundation Hunan Province (2020JJ4300).

Abstract: There is a strong coupling effect between horizontal and vertical direction during inclined drawing of spiral anchor, but its coupling mechanism is not clear yet and lack of quantitative evaluation basis. Circular anchor plate is used to model the single blade screw anchor to carry out inclined drawing model tests in medium-density sand. The inclined drawing bearing mechanism and the influence law of various factors of the flat circular anchor are deeply revealed through the self-made transparent test chamber and digital photographic measurement technology. Some main conclusions are obtained based on the tests. The symmetry of the displacement field and the shear strain field of the soil around the anchor can be divided into two development stages with the change of the load angle. The influence of buried depth ratio on the symmetrical shape of displacement field is more significant than that on shear strain field. With the decrease of load angle, the movement mode of soil around the anchor is gradually transformed from the vertical movement mode in vertical drawing to the rotary movement mode in horizontal drawing, while the two modes coexist in inclined drawing. With the decrease of load angle, the pulling load-bearing displacement curve is transformed from softening type to hardening type. The larger the load angle and buried depth ratio are, the more significant the oscillation of load displacement curve is. Under different buried depth ratios, the three intervals of bearing capacity growth curve have distinct characteristics, which can be fitted by three-stage first-order function. The control degree parameter Cd can reflect the evolution of the control direction with the load angle. When the load angle is in the range of [0°, 80°], the horizontal direction controls the load-bearing characteristics of inclined drawing, while the section of [80°, 90°] is controlled by vertical drawing. The vertical drawing action can significantly improve the horizontal load-bearing capacity of the flat anchors. When judging the load-bearing limit state of the inclined drawing plate anchor or screw anchor, the control direction of the uplift behavior should be determined first.

Key words: circular anchor plate, model test, inclined drawing, ultimate bearing capacity, digital photographic measurement

CLC Number: 

  • TU 441
[1] LIN Dan-tong, HU Li-ming. Model tests on the transport behavior of phosphate-sorbed nano zero-valent iron in porous media [J]. Rock and Soil Mechanics, 2022, 43(2): 337-344.
[2] ZHOU Guang-xin, SHENG Qian, CUI Zhen, WANG Tian-qiang, MA Ya-li-na, FU Xing-wei, . Model test of failure mechanism of tunnel with flexible joint crossing active fault under strike-slip fault dislocation [J]. Rock and Soil Mechanics, 2022, 43(1): 37-50.
[3] XIAO Fei, KONG Ling-wei, LIU Guan-shi, FENG Heng, DONG Yi-yi, ZENG Er-xian, . Uplift model test and capacity calculation method of metal grillage foundation in medium dense aeolian sand [J]. Rock and Soil Mechanics, 2022, 43(1): 65-75.
[4] WU Hui-ming, ZHAO Zi-rong, LIN Xiao-fei, SHI Jian-qian, GONG Xiao-nan, . Model test of active drainage consolidation method on air-lift effect [J]. Rock and Soil Mechanics, 2021, 42(8): 2151-2159.
[5] LI Yuan-hai, LIU De-zhu, YANG Shuo, KONG Jun, . Experimental investigation on surrounding rock stress and deformation rule of TBM tunneling in deep mixed strata [J]. Rock and Soil Mechanics, 2021, 42(7): 1783-1793.
[6] LIU Zhi-peng, KONG Gang-qiang, WEN Lei, WANG Zhi-hua, QIN Hong-yu, . Model tests on uplift and lateral bearing characteristics of inclined helical pile group embedded in sand [J]. Rock and Soil Mechanics, 2021, 42(7): 1944-1950.
[7] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
[8] YAN Qing, ZHAO Jun-hai, ZHANG Chang-guang. A new solution to the ultimate bearing capacity of reinforced foundation near slope based on the unified strength theory [J]. Rock and Soil Mechanics, 2021, 42(6): 1587-1600.
[9] GUO Ming-wei, MA Huan, YANG Zhong-ming, WANG Bin, DONG Xue-chao, WANG Shui-lin, . Settlement analysis of large open caisson foundation at construction stage of Changtai Yangtze River Bridge [J]. Rock and Soil Mechanics, 2021, 42(6): 1705-1712.
[10] SHEN Yang, FENG Zhao-yan, DENG Jue, CHEN Kai-jia, XU Jun-hong, . Model test on bearing capacity of coral sand foundation in the South China Sea [J]. Rock and Soil Mechanics, 2021, 42(5): 1281-1290.
[11] ZHANG Yu, LI Da-yong, LIANG Hao, ZHANG Yu-kun, . Model tests on horizontal bearing capacity and earth pressure distribution of hollow cone-shaped foundation under horizontal monotonic loading [J]. Rock and Soil Mechanics, 2021, 42(5): 1404-1412.
[12] LI Qing-song, WEN Lei, KONG Gang-qiang, GAO Hong-mei, SHEN Zhi-fu, . Theoretical computation of the uplift bearing capacity of helical piles based on cavity expansion method [J]. Rock and Soil Mechanics, 2021, 42(4): 1088-1094.
[13] YANG Jian, JIAN Wen-bin, HUANG Wei, HUANG Cong-hui, LUO Jin-mei, LI Xian-zhong, . Pull-out test and ultimate bearing capacity calculation of grouting branch-type anchor [J]. Rock and Soil Mechanics, 2021, 42(4): 1126-1132.
[14] ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai, . Model tests of large-diameter single pile under horizontal cyclic loading in sand [J]. Rock and Soil Mechanics, 2021, 42(3): 783-789.
[15] ZHENG Jun-jie, SHAO An-di, XIE Ming-xing, JING Dan, . Experimental study on retaining wall with EPS cushion under different backfill widths [J]. Rock and Soil Mechanics, 2021, 42(2): 324-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[9] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .