Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (11): 3117-3127.doi: 10.16285/j.rsm.2022.1840

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on basic physical and mechanical properties of uncompacted saturated loess

KANG Zuo1, KANG Jia-wei2, DENG Guo-hua2, 3   

  1. 1. Xi’an Rail Transit Group Co., Ltd., Xi’an, Shaanxi 710018, China; 2. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 3. Xi’an Loess Underground Engineering Technology Consulting Co., Ltd., Xi’an, Shaanxi 710000, China
  • Received:2022-11-24 Accepted:2023-03-10 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52178355).

Abstract: Immersion of loess can form compacted saturated loess or uncompacted saturated loess, and their engineering properties are significantly different. Based on the tests and data statistics of 22 loess sites in the Xi’an area, this paper systematically studied the basic physical and mechanical properties of the uncompacted saturated loess for the first time, revealed the fundamental reasons for its water-saturated weak property and large deformation due to water loss, and summarized the physical and mechanical characteristics of the uncompacted saturated loess in Xi’an area. The above research results can provide a basis for scientific research and engineering practice to strictly distinguish two types of saturated loess and formulate technical measures by classification. It is concluded that: uncompacted saturated loess is a kind of soil in which collapsible loess is not fully compacted, and macropore structure still exists in the immersion process. It is exposed in Q3 loess or the upper part of Q2 loess. It has a large void ratio, high water content, medium and high sensitivity, medium and high compressibility, low bearing capacity and strength, and is generally in soft plastic or flow plastic state. It is distributed adjacent to the compacted saturated loess, collapsible loess, and paleosol, forming a combination of soft and hard strata.

Key words: saturated loess, uncompacted state, physical state, mechanical properties

CLC Number: 

  • TU 444
[1] ZHANG Pei-sen, XU Da-qiang, LI Teng-hui, HU Xin, ZHAO Cheng-ye, HOU Ji-qun, NIU Hui, . Experimental study of seepage characteristics before and after grouting and mechanical characteristics after grouting of fractured sandstone [J]. Rock and Soil Mechanics, 2023, 44(增刊): 12-26.
[2] LIU De-ren, ZHANG Zhuan-jun, WANG Xu, ZHANG Yan-feng, AN Zheng-shan, JIN Xin, . Study on field application parameters of unsaturated loess ground remodeling by humidification of water vapor [J]. Rock and Soil Mechanics, 2023, 44(增刊): 73-82.
[3] ZHANG Jun-ran, SONG Chen-yu, JIANG Tong, WANG Li-jin, ZHAO Jin-di, XIONG Tan-qing, . Hydromechanical characteristics and microstructure of unsaturated loess under high suction [J]. Rock and Soil Mechanics, 2023, 44(8): 2229-2237.
[4] JIAN Tao, KONG Ling-wei, BAI Wei, SHU Rong-jun, . Dynamic pore pressure model for saturated loess based on dissipative energy [J]. Rock and Soil Mechanics, 2023, 44(8): 2238-2248.
[5] GAO Xu-long, ZHANG Yu-chuan, HUANG Hong-wei, LIU Dong-fa, LIU Zhi-Fan, . Soil-water characteristics and hysteresis effects of loess considering deformation [J]. Rock and Soil Mechanics, 2023, 44(8): 2350-2359.
[6] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[7] WANG Jia-quan, ZHONG Wen-tao, HUANG Shi-bin, TANG Yi, . Experimental study on static and dynamic performances of modular reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2023, 44(5): 1435-1444.
[8] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
[9] LIANG Jing-yu, SHEN Wan-tao, LU De-chun, QI Ji-lin, . Uniaxial compression test of frozen sand considering the effect of the deposition angle [J]. Rock and Soil Mechanics, 2023, 44(4): 1065-1074.
[10] ZHANG Ping, REN Song, ZHANG Chuang, WU Fei, LONG Neng-zeng, LI Kai-xin, . Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature [J]. Rock and Soil Mechanics, 2023, 44(3): 771-783.
[11] HU Nan-yan, HUANG Jian-bin, LUO Bin-yu, LI Xue-xue, CHEN Dun-xi, ZENG Zi-yi, FU Han, LOU Jia-hao. Experimental study on proportioning of epoxy resin-based transparent brittle rock-like materials [J]. Rock and Soil Mechanics, 2023, 44(12): 3471-3480.
[12] GUO Jia-qi, CHENG Li-pan, ZHU Bin-zhong, TIAN Yong-chao, HUANG Xin. Shear mechanical properties and energy characteristics of rock joints under continuous excavation effect [J]. Rock and Soil Mechanics, 2023, 44(1): 131-143.
[13] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[14] CHEN Guang-bo, ZHANG Jun-wen, HE Yong-liang, ZHANG Guo-hua, LI Tan, . Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body [J]. Rock and Soil Mechanics, 2022, 43(S2): 130-143.
[15] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Guang-yong,GU Jin-cai,CHEN An-min,XU Jing-mao,ZHANG Xiang-yang. Research on explosion resisting performance of tunnels reinforced by fully bonded rock bolts in model test[J]. , 2010, 31(1): 107 -112 .
[2] LIU Wei-zheng, SHI Ming-lei. Structural characteristic and engineering effect analysis of Yangtze River backswamp soft soil[J]. , 2010, 31(2): 427 -432 .
[3] YANG Lei, HE Wei-min, ZHOU Yang, ZHANG Qing-ming. Optimal design of deep-mixing pile composite foundation[J]. , 2010, 31(8): 2575 -2579 .
[4] CHI Fu-dong, WANG Jin-ting, JIN Feng, WANG Qiang. Real-time dynamic hybrid testing for soil-structure-fluid interaction analysis[J]. , 2010, 31(12): 3765 -3770 .
[5] AI Zhi-yong, CHENG Zhi-yong. Analysis of axially loaded pile in layered soils by boundary element method[J]. , 2009, 30(5): 1522 -1526 .
[6] WU Zhen-jun,GE Xiu-run. Solving vector sum factor of safety of slope by method of slices[J]. , 2009, 30(8): 2337 -2342 .
[7] XU Hai-qing , FU Zhi-feng , LIANG Li-gang , WANG Guo-bo , CHEN Liang. Ambient vibration analysis of adjacent perpendicular multi-tunnels under train loads[J]. , 2011, 32(6): 1869 -1873 .
[8] CHEN Jin-gang , XU Ping , ZHANG Yan , LI Ya-bang. Experimental research on pre-peak constitutive relation of filled fracture with expansive medium[J]. , 2011, 32(10): 2998 -3003 .
[9] LUO Yu-long, WU Qiang, ZHAN Mei-li, SHENG Jin-chang. Study of critical piping hydraulic gradient of suspended cut-off wall and sand gravel foundation under different stress states[J]. , 2012, 33(S1): 73 -78 .
[10] ZHANG Zhi-chao ,CHEN Yu-min ,LIU Han-long . Numerical analysis and evaluation of simulation of nature earthquake by millisecond blasting technique[J]. , 2013, 34(1): 265 -274 .