›› 2003, Vol. 24 ›› Issue (5): 723-728.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Determination of effective length of a common pile in deep overlay soil layers with secant rigidity of pile

ZENG You-jin, ZHANG Wei-min, WANG Nian-xiang, XU Guang-ming   

  1. Nanjing Hydraulic Research Institute,Nanjing 210024, China
  • Received:2002-06-26 Online:2003-10-10 Published:2014-08-19

Abstract: The control method of secant rigidity of pile is put forward in order to determine effective length of pile based on the definition of effective length of foundation pile brought forward. It is applied to determine effective length of a common pile in deep overlay soil layers with linearly elastoplastic load transfer function. Influential factors of effective length such as coefficient of rigidity of pile, pile’s diameter, top settlement of pile, side ultimate displacement, elastic modulus ratio of the bottom soil and surrounding soil and Poisson’s ratio, are thoroughly analyzed. The results show that the factors have certain effects on effective length of the common pile except elastic modulus ratio of the bottom soil and surrounding soil, and Poisson’s ratio. In order to apply to practical project, it is studied how to confirm parameters in the project.

Key words: effective length, secant rigidity, load transfer, super-long pile

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[2] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[3] WANG Shen, LI Hua-min, LI Dong-yin, WANG Wen, . The effect of rib on load transfer of the thread steel resin bolt [J]. , 2018, 39(8): 2805-2813.
[4] LU Qing-yuan, LUO Qiang, JIANG Liang-wei, . Calculation of stress ratio of rigid pile to composite embankment [J]. , 2018, 39(7): 2473-2482.
[5] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, . Calculation and analysis of load transfer in large-diameter grouted pile in extra-thick fine sand layers [J]. , 2018, 39(4): 1386-1394.
[6] HUANG Ming-hua, ZHAO Ming-hua, CHEN Chang-fu. Influence of anchorage length on stress in bolt and its critical value calculation [J]. , 2018, 39(11): 4033-4041.
[7] GUO Hao-ran, QIAO Lan, LI Yuan. Research on the bearing performance of energy piles using an improved load-transfer model on pile-soil interface [J]. , 2018, 39(11): 4042-4052.
[8] CHEN Chang-fu, ZHAO Xiang-long, WU Yan-quan. Load transfer characteristics of short stiff piles with big caps based on the block displacement method [J]. , 2017, 38(12): 3410-3418.
[9] ZHU Bing-er, QI Chang-guang, BAO Jiao-lei. Field test study of load transfer mechanism of plastic tube pile under embankment loading [J]. , 2016, 37(S2): 658-664.
[10] YAO Wen-juan, CAI Chen-yu. A new load transfer model of super-long pile [J]. , 2016, 37(S2): 783-787.
[11] LAI Han-jiang , ZHENG Jun-jie , ZHANG Rong-jun , ZHANG Jun , CUI Ming-juan,. Discrete element analysis of development and load-transfer mechanism of soil arching within piled embankment [J]. , 2015, 36(S1): 646-650.
[12] ZHANG Xiong , CHEN Sheng-hong,. Analytical solution for load transfer along anchored section of prestressed anchor cable [J]. , 2015, 36(6): 1667-1675.
[13] FU Wen-guang. Discussions on some controversies about pile bearing capacity calculation in the codes [J]. , 2015, 36(10): 2983-2988.
[14] JIA Yu ,SONG Fu-gui ,WANG Bing-long ,YANG Long-cai,. Modified load transfer method for calculation of foundation pile settlement due to dewatering [J]. , 2015, 36(1): 68-74.
[15] ZHOU Jia-jin , WANG Kui-hua , GONG Xiao-nan , ZHANG Ri-hong , YAN Tian-long , XU Yuan-rong,. Bearing capacity and load transfer mechanism of static drill rooted nodular piles [J]. , 2014, 35(5): 1367-1376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] GAO Yang, ZHANG Qing-song, XU Bang-shu, LI Wei. Study of mining roof abutment pressure distribution law and affecting factors under sea[J]. , 2010, 31(4): 1309 -1313 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[7] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[8] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .
[9] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .
[10] JI Mao-wei , WU Shun-chuan , GAO Yong-tao , GE Lin-lin , LI Xiao-jing . Construction monitoring and numerical simulation of multi-arch tunnel[J]. , 2011, 32(12): 3787 -3795 .