›› 2004, Vol. 25 ›› Issue (12): 1999-2002.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of treatment technology of dredging sludge with geosynthetizing method

JI Feng-ling,ZHU Wei,ZHANG Chun-lei   

  1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098,China
  • Received:2003-09-15 Online:2004-12-10 Published:2014-08-19

Abstract: Discarding and covering up dredging sludge may bring environmental problem. How to use and dispose it is an important problem to be paid close attention in China and foreign countries. New geosynthetic material can be developed by technology of solidification and light-weight technology. Based on laboratory tests, unconfined compression strength and density are researched; in addition, the strength mechanism of the soils is analyzed.The technology can avoid the environmental pollution due to sludges;and utilize refuses so as to get socicl benefits.

Key words: dredging sludge, solidification, compound solidification material, light-weight technologg, geosynthetic material

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Dong-xing, XIAO Jie, XIAO Heng-lin, MA Qiang, . Experimental study of carbonated-solidified sludge in East Lake, Wuhan [J]. Rock and Soil Mechanics, 2019, 40(5): 1805-1812.
[2] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[3] ZHANG Ding-wen, XIANG Lian, CAO Zhi-guo, . Effect of CaO on ettringite stabilization/solidification of lead-contaminated soil [J]. , 2018, 39(1): 29-35.
[4] SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WANG Cheng-cheng, . Experimental study of solidifying sand using microbial-induced calcium carbonate precipitation [J]. , 2017, 38(11): 3225-3230.
[5] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, HUANG Qian, XUE Qiang. Experimental study of mechanical and microstructure properties of magnesium phosphate cement treated lead contaminated soils [J]. , 2016, 37(S2): 279-286.
[6] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, LI Zhen-ze. Experimental study of stress-strain properties of lead-contaminated soils treated by magnesium phosphate cement [J]. , 2016, 37(S1): 215-225.
[7] ZHA Fu-sheng, WANG Lian-bin,LIU Jing-jing, XU Long, CUI Ke-rui. Engineering properties of heavy metal contaminated soil solidified/stabilized with high calcium fly ash [J]. , 2016, 37(S1): 249-254.
[8] XIA Wei-yi , DU Yan-jun , WEI Ming-li , BO Yu-lin , SONG De-jun,. Experimental study of solidification/stabilization of VOCs contaminated slurry [J]. , 2016, 37(5): 1281-1290.
[9] ZHANG Ding-wen , ZHANG Tao , LIU Song-yu , CAO Zhi-Guo , . Effect of carbonation on leaching properties of cement stabilized/solidified lead contaminated soil [J]. , 2016, 37(1): 41-48.
[10] WEI Ming-li, WU Hao-liang, DU Yan-jun, XIA Wei-yi. Experimental study of zn and pb contaminated soils stabilized with new phosphate-based binder under freeze-thaw cycles [J]. , 2015, 36(S1): 215-219.
[11] Strength and leaching characteristics of chromium polluted soil solidified . Strength and leaching characteristics of chromium polluted soil solidified with cement in a NaCl erosion environment [J]. , 2015, 36(10): 2855-2861.
[12] BO Yu-lin , YU Bo-wei , DU Yan-jun , WEI Ming-li , . Strength and leachability of lead contaminated clay stabilized by GGBS-MgO [J]. , 2015, 36(10): 2877-2891.
[13] ZHANG Shao-hua, LI Yi, KOU Xiao-hui, DONG Xiao-qiang. Study of electrical resistivity and strength characteristics of zinc contaminated soil solidified by cement [J]. , 2015, 36(10): 2899-2906.
[14] YANG Ai-wu ,ZHOU Jin ,KONG Ling-wei . Experimental study of solidification of soft dredger fill in Tianjin Binhai New Area [J]. , 2013, 34(9): 2442-2248.
[15] LI Jiang-shan,XUE Qiang,HU Zhu-yun,LI Xian-wang. Study of strength stability of municipal solid waste incinerator fly ash solidified by cement [J]. , 2013, 34(3): 751-756.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
[3] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[4] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[5] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[6] GUO Bao-hua. Numerical analysis of hydraulic fracturing on single-holed rock specimens[J]. , 2010, 31(6): 1965 -1970 .
[7] . [J]. , 2010, 31(7): 2351 -2352 .
[8] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[9] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[10] MENG Qing-shan,KONG Ling-wei,CHEN Neng-yuan,FAN Jian-hai,GUO Gang. Centrifugal model test on slope supporting with pile-anchor combined retaining wall[J]. , 2010, 31(11): 3379 -3384 .