›› 2006, Vol. 27 ›› Issue (5): 846-848.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Case study of synthetic method of stress isolation and ground reinforcement to handle soft ground problem induced by adjacent surcharge load

LIU Yu-chuan1, CHEN Fu-quan1,2, ZUO Guang-zhou1   

  1. 1.Institute of Geotechnical Engineering, Fuzhou University, Fuzhou 350002, China; 2.Deparment of Civil Engineering, Fujian University of Technology, Fuzhou350014, China
  • Received:2004-09-01 Online:2006-05-10 Published:2013-11-05

Abstract: Application of a surcharge load to soft soil ground results in immediate undrained lateral soil movement away from the load and induces additional stress into the adjacent ground; problems involving the respond of soft ground to surcharge have been the topic of much recent research. Based on the engineering application which uses the synthetic method of stress isolation and ground reinforcement to handle soft ground problem induce by the adjacent surcharge load, this paper employs the PLAXIS to analyze the stress distribution and deformation of ground; reasonable agreement between the result and the observing data, is found.

Key words: surcharge, stress isolation, ground reinforcement

CLC Number: 

  • TU 470
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] WEI Huan-wei, SUN chuan, WANG Jian-qiang, LI Yu, LIU Cong, ZHANG Wei,. Model test of combined foundation of piles-diaphragm wall under surcharge [J]. , 2018, 39(S1): 203-210.
[3] KANG Cheng, MEI Guo-xiong, LIANG Rong-zhu, WU Wen-bing, FANG Yu-xiang, KE Zhai-bang, . Analysis of the longitudinal deformation of existing shield tunnel induced by temporary surface surcharge [J]. Rock and Soil Mechanics, 2018, 39(12): 4605-4616.
[4] ZHANG Ming-gao , ZHOU Shun-hua , HUANG Da-wei , WANG Xiu-zhi , LIU Hong-bo,. Analysis of influence of surface surcharge on subway shield tunnel under [J]. , 2016, 37(8): 2271-2278.
[5] CHENG Xiao-hu , PANG Zhen-yong , ZENG Dong-yang , ZENG De-guang,. Theoretical research on whole stability of unlined shallow earth tunnels based on ultimate surcharge [J]. , 2016, 37(3): 835-841.
[6] YE Guan-bao , ZHANG Qing-wen , ZHANG Zhen , . Consolidation analysis of concrete-cored sand-gravel piles improved composite foundation under combined vacuum and surcharge preloading [J]. , 2016, 37(12): 3356-3364.
[7] LEI Hua-yang, REN Qian, LU Hai-bin, LI Bin,. Experimental study of overload ratio and unloading control of double-layer soft clay foundation in a dredger fill site [J]. , 2016, 37(11): 3072-3078.
[8] YANG Feng , ZHENG Xiang-cou , ZHAO Lian-heng , SHI Jie-hong , YANG Jun-sheng,. Finite element upper bound analysis of tunnel instability under surcharge loading [J]. , 2015, 36(S2): 695-701.
[9] ZHANG Tao , LIU Song-yu , CAI Guo-jun , . Research on settlement of soft soil ground in Taihu [J]. , 2015, 36(S1): 253-259.
[10] LIU Chun-yuan, ZHU Nan, ZHAO Xian-hui, WANG Wen-jing. Centrifugal test study of vacuum combined with surcharge preloading of lacustrine soft soil [J]. , 2015, 36(S1): 310-314.
[11] GONG Xiao-nan , SUN Zhong-ju , YU Jian-lin , . Analysis of displacement of adjacent buried pipeline caused by ground surcharge [J]. , 2015, 36(2): 305-310.
[12] DENG Hui-yuan, DAI Guo-liang, GONG Wei-ming, ZHU Zhong-fa. In situ experimental study of bearing characteristics of pile foundation under different balanced surcharges [J]. , 2015, 36(11): 3063-3070.
[13] KE Cai-tong, CHEN Yi-bo, GAO Hong-bo, XIE Hong-bo. Calculation of active earth pressure for cohesive soil under action of strip surcharge [J]. , 2013, 34(S1): 167-172.
[14] LI Zhi-wei. Study of influence of surcharge load on lateral displacement of bridge piled foundation in soft ground [J]. , 2013, 34(12): 3594-3600.
[15] ZHANG Kai-peng, XIONG Yan-wen, XIA Yuan-you, LIU Xin-xi. Numerical analysis of surcharge preloading consolidation effects on soft foundation [J]. , 2011, 32(S1): 648-0651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[2] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[3] LI Jian-hua, XU Bin, XU Man-qing, LIU You-ping. Vibration isolation using pile rows in a layered poroelastic half-space against vibration due to harmonic loads[J]. , 2010, 31(S2): 12 -18 .
[4] TIAN Qi-qiang,HOU Xing-min,WANG Zi-fa. A new method of subsoil damping ratio identification based on free vibration of a massive concrete foundation[J]. , 2011, 32(1): 211 -216 .
[5] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[6] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[7] TAN Feng-yi, ZOU Zhi-kui, ZOU Rong-hua, LIN Zu-kai, ZhENG De-gao. Experimental study of engineering property of replaced-backfilling clay[J]. , 2009, 30(S2): 154 -157 .
[8] HU Zai-qiang, LI Hong-ru, SU Yong-jiang. 3-D static stress and displacement analysis of Gangqu river concrete faced rockfill dam[J]. , 2009, 30(S2): 312 -0317 .
[9] QIAN Yue-hong , LI Jie , CHEN Wen-tao , LI Wen-pei. Investigation of characteristics of failure nearby deep tunnel considering unloading time[J]. , 2011, 32(5): 1347 -1352 .
[10] HE Li-jun , KONG Ling-wei , WU Wen-jun , ZHANG Xian-wei , CAI Yu. A description of creep model for soft soil with fractional derivative[J]. , 2011, 32(S2): 239 -243 .