›› 2006, Vol. 27 ›› Issue (8): 1299-1304.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on constitutive model and its parameter’s back analysis of creep deformation for the high rockfill embankment and their application

CAO Wen-gui1, LI Peng2, CHENG Ye1   

  1. 1.Geotechnical Engineering Institute, Hunan University, Changsha 410082, China;2.Hunan Bureau of Expressway Administration, Changsha 410076,China
  • Received:2004-11-06 Online:2006-08-10 Published:2013-11-26

Abstract: Based on practical measuring data in engineering, the hyperbola-shaped constitutive model which has three parameters and reflects the law of creep deformation after construction for high rockfill embankment is firstly proposed by combing the mechanism of settlement with the features of engineering; and the back-analysis way that the model’s parameters are determined has been brought forward with introduction of genetic algorithm and finite element method. Afterwards,the computational means of the settlement after construction for high rockfill embankment is deeply discussed using finite element method for creep; and the relevant analytic software is developed. Finally, the application for the constitutive model proposed in this paper and the computational method of the settlement for high rockfill embankment is deeply probed by combining with the practices of engineering. It is indicated by analysis of the example of practical engineering that both the constitutive model for creep deformation and the computational means of settlement after construction are simple and reach the request of engineering practice, and a new computational method for the after-construction settlement of high rockfill embankment which is elementarily established

Key words: creep, constitutive model, genetic algorithm, finite element method, rockfill embankment, back analysis

CLC Number: 

  • TU 433
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[2] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[3] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[4] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[5] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
[6] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[7] SUN Yi-fei, CHEN Cheng, . A state-dependent stress-dilatancy equation without state index and its associated constitutive model [J]. Rock and Soil Mechanics, 2019, 40(5): 1813-1822.
[8] YANG Qi-lai, XIONG Yong-lin, ZHANG Sheng, LIU Gan-bin, ZHENG Rong-yue, ZHANG Feng, . Elastoplastic constitutive model for soft rock considering temperature effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906.
[9] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[10] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[11] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[12] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[13] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[14] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[15] FANG Jin-jin, FENG Yi-xin, ZHAO Wei-long, WANG Li-ping, YU Yong-qiong, . Nonlinear constitutive model for intact loess in true tri-axial tests [J]. Rock and Soil Mechanics, 2019, 40(2): 517-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[3] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[4] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[5] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[6] HU Qi, LING Dao-sheng, CHEN Yun-min. Analytical method and engineering application of horizontal coefficients of subgrade reaction based on Melan’s solution[J]. , 2009, 30(1): 33 -39 .
[7] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[8] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[9] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .