›› 2007, Vol. 28 ›› Issue (S1): 129-132.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Modified equivalent additional stress method for numerical analysis of reinforced soil

JIE Yu-xin1, 2, WANG Nai-dong3, LI Guang-xin1, 2   

  1. 1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; 2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China; 3 Department of Civil Engineering, Beihang University, Beijing 100083, China
  • Received:2007-06-30 Online:2007-10-25 Published:2014-03-28

Abstract: The basic principle of equivalent additional stress method is that only soil skeleton is concerned while the reinforcing effect is considered to be equivalent additional stress acting on the soil skeleton in the direction reinforcement being bedded. This method is fit for fiber reinforced soil, soil nailing wall and soil reinforced with layered reinforcements, etc. It can not only remove interface element for the method dealing with soil and reinforcement separately, but also avoid determining the composite constitutive equation of the reinforced soil. However, iteration is necessary for the conventional equivalent additional stress method, which makes it difficult in writing FEM program. In this paper, a modified method is put forward to deal with this problem. An additional matrix is calculated and added to the elastic matrix or elastoplastic matrix of soil, the method can be employed directly without iteration. The modified method is easy for writing FEM program and helpful for extending the application of equivalent additional stress method.

Key words: reinforced soil, fiber reinforced soil, soil-nailing wall, equivalent additional stress method, finite element method

CLC Number: 

  • TU 431
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[2] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[3] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[4] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[5] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[6] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[7] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
[8] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[9] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[10] XU Peng, JIANG Guan-lu, QIU Jun-jie, LIN Zhan-zhan, WANG Zhi-meng,. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method [J]. , 2018, 39(8): 2765-2770.
[11] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[12] CHEN Jian-feng, TIAN Dan, LIU Jun-xiu,. Internal failure mechanism of reinforced soil walls with rigid/flexible facings [J]. , 2018, 39(7): 2353-2360.
[13] LIU Fei-yu, SHI Jing, WANG Jun, CAI Yuan-qiang,. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand [J]. , 2018, 39(6): 1991-1998.
[14] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[15] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Ming-ming, WANG Zhi-yin, MA Lan-ping, ZENG Zhi-hua, ZHANG Zhi-pei. Study of design parameters of oil-gas pipeline traversing loess gully[J]. , 2010, 31(4): 1314 -1318 .
[2] XU Ming, CHEN Jin-feng, SONG Er-xiang. Large scale triaxial testing of Douposi moderately-to-slightly weathered fill materials[J]. , 2010, 31(8): 2496 -2500 .
[3] LIN Hang,CAO Ping,LI Jiang-teng,JIANG Xue-liang,HE Zhong-ming. Deformation stability of three-dimensional slope based on Hoek-Brown criterion[J]. , 2010, 31(11): 3656 -3660 .
[4] WANG Ke-liang, LIU Ling, SUI Tong-bo , XU Yun-hai, HU Ting-zheng. Experiment research on anti-shear(cut)performance of dam bedrock-rubber powder modified concrete in-situ[J]. , 2011, 32(3): 753 -756 .
[5] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
[6] JIN Xu-hao , LU Wen-bo , TIAN Yong , YAN Peng , CHEN Ming. Analysis of mechanisms of S wave generated in rock blasting process[J]. , 2011, 32(S2): 228 -232 .
[7] LI Tao ,ZHANG Zhi-hong ,TANG Bao-rong. Experimental study of retardant effect of clay barriers on contaminants in a confined disposal facility for dredged sediments from Taihu Lake[J]. , 2012, 33(4): 993 -998 .
[8] LI Jian-jun,SHAO Sheng-jun,YANG Fu-yin,YANG Chun-ming. Experimental research on impermeable characteristics of slurry cake in cutoff wall hole of coarse-grained soil[J]. , 2012, 33(4): 1087 -1093 .
[9] LI Hui , YAN E-chuan , YANG Jian-guo , Lü Kun . Study of interaction of landslide mass and retaining wall under condition of reservoir water[J]. , 2012, 33(5): 1593 -1600 .
[10] LIU Tao-ying ,CAO Ping ,ZHANG Li-feng ,ZHAO Yan-lin ,FAN Xiang . Study of fracture damage evolution mechanism of compression-shear rock cracks under high seepage pressure[J]. , 2012, 33(6): 1801 -1815 .