›› 2008, Vol. 29 ›› Issue (2): 517-522.

• Geotechnical Engineering • Previous Articles     Next Articles

Research on geogrid reinforced soil retaining wall with wrapped face by in-situ tests

YANG Guang-qing, LÜ Peng, PANG Wei, ZHAO Yu   

  1. School of Civil Engineering, Shijiazhuang Railway Institute, Shijiazhuang 050043, China
  • Received:2006-01-23 Online:2008-02-11 Published:2013-07-10

Abstract: In order to research the behaviors of the geogrids reinforced soil retaining wall of wrapped face in the railway main line of China, the tests, including the basement pressure and lateral pressure of the reinforced soil wall, the tensile force of the reinforcement and the lateral deformation in-situ are done. The vertical basement pressure, the distribution of tensile force along reinforcement, the potential slide surface and the lateral earth pressure along height are analyzed. The basement vertical pressure of reinforced soil retaining wall is nonlinear along the reinforcement length, and the maximum value is at the middle of the reinforcement length, moreover the value reduce gradually at former and bottom. The testing lateral pressure of the reinforced soil wall is nonlinear along the height; and the value is less than the active lateral earth pressure. The distribution of tensile strain along reinforcement at the upper wall is single peak value; but the distribution of tensile strain along reinforcement at the lower wall is twin peak values. The potential fracture plane at upper wall is similar to “0.3H” method; but the potential fracture plane at lower wall is near to the active Rankine earth pressure theory. The position of the maxmium lateral displacement of the wall face during construction is at lower wall; moreover the position of the maxmium lateral displacement of the wall face after construction is at top of the wall.

Key words: wrapped face, geogrids, reinforcement soil wall, in-situ test

CLC Number: 

  • TU 471
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] FU Hai-qing, YUAN Xiao-ming, WANG Miao,. An incremental model of pore pressure for saturated sand based on in-situ liquefaction test [J]. , 2018, 39(5): 1611-1618.
[2] WANG Guo-fu, CAO Zheng-long, LU Lin-hai, WANG Rong, WANG Dan, HAN Shuai,. Measurement and analysis about coefficient of earth pressure at rest in alluvium of the Yellow river [J]. , 2018, 39(10): 3900-3906.
[3] CAO Yuan, NIU Guan-yi, WANG Tie-liang, WANG Ying-jie,. A new method for rock porosity inversion based on in-situ permeability test [J]. , 2017, 38(1): 272-276.
[4] WEN Yong, YANG Guang-hua, TANG Lian-sheng, XU Chuan-bao,. Tests and parameters study of mechanical properties of granite residual soil in Guangzhou area [J]. , 2016, 37(S2): 209-215.
[5] WANG He , YANG Guang-qing , XIONG Bao-lin , WU Lian-hai , LIU Hua-bei,. An experimental study of the structural behavior of reinforced soil retaining wall with concrete-block panel [J]. , 2016, 37(2): 487-498.
[6] QIU Ming-ming , YANG Xiao , YANG Guo-lin , FANG Yi-he,. Dynamic response of the new fully-enclosed cutting subgrade of Yun-Gui high-speed railway [J]. , 2016, 37(2): 537-544.
[7] CHEN Yu-min, ZHANG Yi-jiang, WANG Wei-guo, CHEN Chen-wei, . Experimental investigation into dynamic response of shallow-buried reinforced concrete structure in blast-induced liquefied sandy foundation [J]. , 2016, 37(12): 3506-3512.
[8] YU Yong-tang , ZHENG Jian-guo , LIU Zheng-hong , ZHANG Ji-wen,. Borehole shear test and its application to loess [J]. , 2016, 37(12): 3635-3641.
[9] MA Yong-feng , ZHOU Ding-heng , ZHANG Zhi-hao , CAO Li-qiao,. In-situ test on vibro-replacement stone pile in large petrochemical foundation treatment [J]. , 2015, 36(S1): 327-333.
[10] JIA Min-cai , QIANG Xiao , YE Jian-zhong,. Comparison study of reinforcement effect of HDPE/PET geogrids in fill embankment [J]. , 2015, 36(S1): 491-495.
[11] LAI Jin-xing ,FAN Hao-bo ,LAI Hong-peng ,XIE Yong-li ,HU Zhao ,QIU Jun-ling ,CAO Ning-quan,. In-situ monitoring and analysis of tunnel deformation law in weak loess [J]. , 2015, 36(7): 2003-2012.
[12] YANG Xiao-hui , ZHU Yan-peng , GUO Nan , HUANG Xue-feng , . Internal force test research on pile-anchor retaining structure of metro station deep foundation [J]. , 2014, 35(S2): 185-197.
[13] XU Ping ,ZHANG Tian-hang ,SHI Ming-sheng ,LIU Gan-bin . In-situ test and numerical simulation of isolation of impact loads by open trenches [J]. , 2014, 35(S1): 341-346.
[14] Lü Ya-ru , DING Xuan-ming , SUN Jia , KONG Gang-qiang . Analysis of ultimate bearing capacity of X-section cast-in-place concrete pile composite foundation under rigid load [J]. , 2012, 33(9): 2691-2696.
[15] QU Chang-zi , WANG Yong-he , WEI Li-min , GUO Zhi-guang . In-situ test and analysis of vibration of subgrade for Wuhan-Guangzhou high-speed railway [J]. , 2012, 33(5): 1451-1456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[3] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[4] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[5] GUO Bao-hua. Numerical analysis of hydraulic fracturing on single-holed rock specimens[J]. , 2010, 31(6): 1965 -1970 .
[6] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[7] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[8] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[9] LENG Yi-fei, ZHANG Xi-fa, YANG Feng-xue, JIANG Long, ZHAO Yi-min. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. , 2010, 31(12): 3758 -3764 .
[10] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .