›› 2016, Vol. 37 ›› Issue (12): 3506-3512.doi: 10.16285/j.rsm.2016.12.020

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental investigation into dynamic response of shallow-buried reinforced concrete structure in blast-induced liquefied sandy foundation

CHEN Yu-min1, 2, ZHANG Yi-jiang1, 2, WANG Wei-guo1, 2, CHEN Chen-wei1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2014-11-30 Online:2016-12-10 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51379067), The Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (51420105013) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R17).

Abstract: Saturated sand foundation may be liquefied under explosive load. Structures on the foundation will suffer a dual influence of explosive load and sand liquefaction, which causes uneven settlement and destructive deformation. Based on a large-scale field test of liquefied foundation induced by embedded blast, the dynamic response of the shallow-buried reinforced concrete (RC) structures subjected to explosion and its deformations after liquefaction are examined. It is indicated that, obvious uneven settlement of the RC structure occurs; and the maximum settlement reaches 10% of the height of the RC structure; and differential settlement reaches 1/5 of the maximum settlement. The settlement comes to be stable in 15 hours after the explosion. There is no obvious crack appearing on the surface of the structure; and the dynamic tensile and compressive strains are both under 400 ??, which would not cause significant damage to the structure. The acceleration peak of the column is larger than that of the girder; however, the time required for the dynamic stability of column is shorter than that of the girder, i.e. column suffers a larger instantaneous impulse and has stronger ability to resist instantaneous impulse. The results provide references for the seismic design of shallow-buried RC structures in the liquefiable soils.

Key words: blast induced liquefaction, shallow-buried reinforced concrete structures, dynamic response, settlement and deformation, in-situ test

CLC Number: 

  • TU 441

[1] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[2] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[3] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[4] WANG Li-an, ZHAO Jian-chang, HOU Xiao-qiang, LIU Sheng-wei, WANG Zuo-wei. Lamb problem for non-homogeneous saturated half-space [J]. Rock and Soil Mechanics, 2020, 41(5): 1790-1798.
[5] FENG Li, DING Xuan-ming, WANG Cheng-long, CHEN Zhi-xiong. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304.
[6] LU Wei, ZHAO Dong, LI Dong-bo, MAO Xiao-fei. Analytical method for dynamic response of fully grouted anchorage system of rammed earth sites [J]. Rock and Soil Mechanics, 2020, 41(4): 1377-1387.
[7] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
[8] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[9] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[10] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[11] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[12] LU Jun-long, ZHANG Yin, . Experimental study of the seismic response of the assembled multi-ribbed wall structure-subsoil system in frequency domain [J]. Rock and Soil Mechanics, 2019, 40(6): 2163-2171.
[13] JIANG Li-Chun, LUO En-Min, SHEN Bin-Bin, . A dynamic response of blasting to stereoscopic goaf group based on the multi-degree of freedom model method [J]. Rock and Soil Mechanics, 2019, 40(6): 2407-2415.
[14] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[15] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!