›› 2008, Vol. 29 ›› Issue (5): 1295-1298.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Rearch on creep characteristics of red beds stuffing and engineering application

LIU Jun-xing1, XIE Qiang2, WEN Jiang-quan2, QIU En-xi2   

  1. 1. School of Civil Engineering and architecture Southwest Universit of Science And Technology, Mianyang 621010, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2006-07-18 Online:2008-05-10 Published:2013-07-24

Abstract: In order to keep track even and steady in high speed railway, it is necessary for no embankment settlement after construction; but red beds are easy to collapse and soften, which belongs to stuffing for the third grade. Based on results of long-duration static test of simple compression without confining pressure (the grain size of sample is below 2 mm and compacting degree is above 95 %), the creep characteristics of red beds are analyzed; and at the same time settlement after construction can be predicted by numerical algorithm for engineering applications. So it is proved that red beds can be served as stuffing with a certain construction methods and no settlement after construction is entirely fulfilled.

Key words: red beds stuffing, high speed railway, settlement after construction, no settlement, creep, embankment

CLC Number: 

  • TU 446
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[2] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[3] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[4] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[5] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[6] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[7] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[8] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[9] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[10] WU Jian-tao, YE Xiao, LI Guo-wei, JIANG Chao, CAO Xue-shan, . Bearing and deformation behaviors of PHC pile-reinforced soft foundation under high embankment [J]. Rock and Soil Mechanics, 2018, 39(S2): 351-358.
[11] LIU Quan-sheng, LUO Ci-you, CHEN Zi-you, LIU He, SANG Hao-min, WANG Wen-kai, . Development of triaxial rheological testing equipment for in-situ rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 473-479.
[12] TANG Jian-xin, TENG Jun-yang, ZHANG Chuang, LIU Shu, . Experimental study of creep characteristics of layered water bearing shale [J]. , 2018, 39(S1): 33-41.
[13] CAI Ting-ting, FENG Zeng-chao, ZHAO Dong, JIANG Yu-long,. A creep model for lean coal based on hardening-damage mechanism [J]. , 2018, 39(S1): 61-68.
[14] ZHANG Yu, WANG Ya-ling, YU Jin, ZHANG Xiao-dong, LUAN Ya-lin,. Creep behavior and its nonlinear creep model of deep gypsum mudstone [J]. , 2018, 39(S1): 105-112.
[15] YANG Xiu-rong, JIANG An-nan, JIANG Zong-bin. Creep test and damage model of soft rock under water containing condition [J]. , 2018, 39(S1): 167-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Xian-jun, CHEN Ming-xiang, CHANG Xiao-lin, ZHOU Wei, YUNA Zi-hou. Studies of application of Drucker-Prager yield criteria to stability analysis[J]. , 2009, 30(12): 3733 -3738 .
[2] QI Ji-lin,MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. , 2010, 31(1): 133 -143 .
[3] WU Huo-zhen, FENG Mei-guo, JIAO Yu-yong, LI Hai-bo. Analysis of sliding mechanism of accumulation horizon landslide under rainfall condition[J]. , 2010, 31(S1): 324 -329 .
[4] LIU Zhong-xin, ZHU Hui-li, CHEN Zheng-hong. Analysis of geological disasters caused by heavy rainfall along Jianghuai Section of Beijing-Kowloon Railway[J]. , 2010, 31(10): 3254 -3259 .
[5] XU Xiao-jian, QIAN De-ling, GUO Wen-ai, WANG Jian. Application of RAGA-based exponential curve model in prediction of pile limit bearing capacity[J]. , 2009, 30(1): 139 -142 .
[6] LIU Lei, LIANG Bing, XUE Qiang, ZHAO Ying. Numerical prediction of settlement and biodegradation effect on porosity within landfill[J]. , 2009, 30(1): 196 -200 .
[7] FAN Yun-yun, WANG Si-jing, WANG En-zhi, LIU Xiao-li. Research on point safety factor of shear failure geomaterials[J]. , 2009, 30(S2): 200 -203 .
[8] SHI Xiang-chao, MENG Ying-feng, LI Gao. Comparative analyses of several rock strength criteria[J]. , 2011, 32(S1): 209 -216 .
[9] DING Xuan-ming, LIU Han-long. Comparative analysis of dynamic responses of cast-in-place concrete large-diameter pipe pile and solid pile in homogeneous soil[J]. , 2011, 32(S1): 260 -264 .
[10] ZHANG Gui-rong , CHENG Wei. Stability prediction for Bazimen landslide of Zigui County under the associative action of reservoir water lever fluctuations and rainfall infiltration[J]. , 2011, 32(S1): 476 -0482 .