›› 2010, Vol. 31 ›› Issue (11): 3556-3562.

• Geotechnical Engineering • Previous Articles     Next Articles

Mechanism analysis of residual liquefied deformation of breakwater during earthquake

WANG Li-yan1,JIANG Peng-ming1,LIU Han-long2   

  1. 1. School of Civil and Architectural Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China; 2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China
  • Received:2009-07-23 Online:2010-11-10 Published:2010-11-24

Abstract:

The prediction of residual deformation and analysis of damage mechanism of breakwater are complicated problems in seaport engineering during earthquake. The nonlinear constitutive model of a multiple shear mechanism type in strain space is used in the study; and the effect of rotation of principal stress axis direction has been considered. The effective stress analysis of breakwater is given by considering both fine content of clay and equivalent SPT N-value; and some conclusions are achieved that the greater residual deformation of breakwater is induced by softened soil due to higher pore water pressure of soil. Then, the index of extent of liquefaction is applied to scale residual deformation of the breakwater; and the prediction relation of function is achieved between residual deformation and extent of liquefaction. The prediction values are close to investigation and numerical analysis values; it is shown that the function of prediction is credible. Some reference is provided by this prediction method of residual deformation by extent of liquefaction for similar breakwaters.

Key words: earthquake, breakwater, sandy soil, residual deformation, excess pore water pressure, extent of liquefaction

CLC Number: 

  • P 315.2
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[3] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[4] HE Ying, YU Qin, LIU Zhong-xian, . Simulation of multi-point spatially correlated earthquake ground motions of sedimentary valleys considering scattering effect [J]. Rock and Soil Mechanics, 2019, 40(7): 2739-2747.
[5] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[6] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[7] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[8] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[9] ZHANG Chun-sheng, LAI Dao-ping, WU Guan-ye, XU Jian-rong, ZHANG Bo-yan, . Failure mode and characteristics study of complex slope blocks under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(12): 4620-4626.
[10] LIU Yun, LAI Jie, XIN Jian-ping, LI Xiu-di, XING Rong-jun, . Comparison test of dynamic response characteristics of the tunnels through fault [J]. Rock and Soil Mechanics, 2019, 40(12): 4693-4702.
[11] WANG Dong-wei, LU Wu-ping, TANG Chao-sheng, ZHAO Hong-wei, LI Sheng-jie, LIN Luan, LENG Ting, . Sample preparation technique and microstructure quantification method for sandy soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4783-4792.
[12] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
[13] ZHOU Cui-ying, ZHAO Shan-shan, YANG Xu, LIU Zhen, . Improvement of eco-ester materials on sandy soils and engineering slope protection [J]. Rock and Soil Mechanics, 2019, 40(12): 4828-4837.
[14] SHA Fei, LI Shu-cai, LIN Chun-jin, LIU Ren-tai, ZHANG Qing-song, YANG Lei, LI Zhao-feng. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media [J]. Rock and Soil Mechanics, 2019, 40(11): 4259-4269.
[15] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .