›› 2011, Vol. 32 ›› Issue (10): 3097-3104.

• Geotechnical Engineering • Previous Articles     Next Articles

Research on supporting method for deep rock roadway with broken and soft surrounding rock in Guqiao Coal Mine

LIU Quan-sheng1, KANG Yong-shui1, BAI Yun-qiang2   

  1. 1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Guqiao Coal Mine, Huainan Mining Industry (Group) Limited Liability Company, Huainan, Anhui 232131, China
  • Received:2010-01-31 Online:2011-10-10 Published:2011-10-13

Abstract: In order to research the supporting methods for deep rock roadway with broken and soft surrounding rock in coal mines, this article analyzed the deformation pattern of the deep rock roadway basing on the engineering background of level -780 m south wing rail roadway of Guqiao Coal Mine, Huainan mining area. Comparing with the shallow rock roadway, the difficulties as well as methods in supporting deep rock roadway were analyzed; and afterwards, Sub-step supporting method and optimized supporting method for south wing rail roadway of Guqiao Coal Mine were raised. Monitoring data show that sub-step supporting method is successfully used in the level -780 m south wing rail roadway of Guqiao Coal Mine. The following ideas were raised, deep rock roadway is affected by multiple factors, such as ground pressure and physical features of the rock mess. Supporting methods should consider geological conditions and make all of the supporting measures to achieve effective integration so as to enhance the self-supporting capability of the surrounding rock

Key words: deep rock roadway, high stress, surrounding rock, support, monitoring

CLC Number: 

  • TU 452
[1] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[2] JIANG Zhong-ming, LI Peng, ZHAO Hai-bin, FENG Shu-rong, TANG Dong, . Experimental study on performance of shallow rock cavern for compressed air energy storage [J]. Rock and Soil Mechanics, 2020, 41(1): 235-241.
[3] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[4] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[5] XIU Nai-ling, YAN Yu-zhong, XU Yun, WANG Xin, GUAN Bao-shan, WANG Zhen, LIANG Tian-cheng, FU Hai-feng, TIAN Guo-rong, MENG Chuan-you, . Experimental study on conductivity of self-supporting shear fractures based on non-Darcy flow [J]. Rock and Soil Mechanics, 2019, 40(S1): 135-142.
[6] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[7] ZHENG Shuai, JIANG An-nan, ZHANG Feng-rui, ZHANG Yong, SHEN Fa-yi, JIANG Xu-dong, . Dynamic classification method of surrounding rock and its engineering application based on machine learning and reliability algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 308-318.
[8] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[9] LI Qiao, MENG Fan-zeng, NIU Yuan-zhi. Bridge pier deformation and control technology of jacking framed bridge with loading under crossing high speed railway [J]. Rock and Soil Mechanics, 2019, 40(9): 3618-3624.
[10] RUAN Yong-fen, GAO Chun-qin, LIU Ke-wen, JIA Rong-gu, DING Hai-tao, . Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine [J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669.
[11] CHEN Bing-rui, WU Hao, CHI Xiu-wen, LIU Hui, WU Meng-die, YAN Jun-wei, . Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application [J]. Rock and Soil Mechanics, 2019, 40(9): 3689-3696.
[12] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
[13] LI Tong, FENG Xia-ting, WANG Rui, XIAO Ya-xun, WANG Yong, FENG Guang-liang, YAO Zhi-bin, NIU Wen-jing, . Characteristics of rockburst location deflection and its microseismic activities in a deep tunnel [J]. Rock and Soil Mechanics, 2019, 40(7): 2847-2854.
[14] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[15] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .