›› 2013, Vol. 34 ›› Issue (S2): 229-236.

• Geotechnical Engineering • Previous Articles     Next Articles

Calculation methods and stress characteristics of a hardfill dam

WU Meng-xi,SUN Ning   

  1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2013-04-15 Online:2013-11-11 Published:2013-11-19

Abstract: The stress and deformation of a typical 100-meter-high hardfill dam is investigated. Both the process of the construction of the dam and the stress-strain relationship of the hardfill material which varied with the construction age and stress state have a great impact on the stresses and the deformation of the dam. The elastic modulus of the foundation has a great impact on the stresses of the dam. The stresses are quite different in a dam with a low elastic modulus compared with that with a rigid foundation. While the elastic modulus of the foundation decreases, the minor principal stress of the dam at the middle of the horizontal section adjacent to the foundation decreases; and the maximum principal stress at toe and heel of the dam increases at an empty reservoir. Both the tensile strength and compressive strength of the material may not meet the requirements of the dam on a foundation with a low elastic modulus. The compressive stress above the basement increases and the tensile stress decreases at a full reservoir compared with that in the empty reservoir. The anti-compressive safety factor of the dam decreases and the anti-tensile safety factor increases at full reservoir. The factor of shear strength safety is always high. Hence the analysis of a hardfill dam should be focused on the compressive and tensile strength safety.

Key words: hardfill dam, stress, finite elements, modulus of foundation

CLC Number: 

  • TU 47
[1] CHEN Wei-zhong, LI Fan-fan, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388.
[2] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[3] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[4] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[5] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[6] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[7] WANG Long, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Compression model for cohesionless soils and its verification [J]. Rock and Soil Mechanics, 2020, 41(1): 229-234.
[8] AI Xi, LENG Wu-ming, XU Fang, ZHANG Qi-shu, ZHAI Bin, . Graphic method for computing horizontal additional stress in a new prestressed subgrade [J]. Rock and Soil Mechanics, 2020, 41(1): 253-266.
[9] LIU Quan-sheng, LUO Ci-you, ZHU Yuan-guang, JIANG Jing-dong, LIU He, PENG Xing-xin, PAN Yu-cong, . Research on orientation layout of pressure sensing units by rheological stress recovery method [J]. Rock and Soil Mechanics, 2020, 41(1): 336-341.
[10] PENG Shou-jian, GUO Shi-chao, XU Jiang, GUO Chen-ye, ZHANG Chao-lin, JIA Li, . Impacts of mining-induced stress concentration on coal-bed methane drainage in boreholes parallel with bedding [J]. Rock and Soil Mechanics, 2019, 40(S1): 99-108.
[11] REN Qing-yang, ZHANG Huang-mei, LIU Jia-shen, . Rheological properties of mudstone under two unloading paths in experiments [J]. Rock and Soil Mechanics, 2019, 40(S1): 127-134.
[12] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[13] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[14] QIN Wei, DAI Guo-liang, MA Li-zhi, PEI Ming-hai, WANG Lei, ZHU Guang-yao, GAO Bo, . In-situ static loading tests of prestressed high strength concrete (PHC) pile in coral strata [J]. Rock and Soil Mechanics, 2019, 40(S1): 381-389.
[15] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .