›› 2014, Vol. 35 ›› Issue (6): 1703-1710.

• Geotechnical Engineering • Previous Articles     Next Articles

Principal stress difference transfer law and support in large-section open-off cut

HE Fu-lian, WANG Xiao-ming, XU Lei, WU Huan-kai, WANG Jun   

  1. School of Resources and Safety Engineering, China University of Minning and Technology (Beijing), Beijing 100083, China
  • Received:2013-04-30 Online:2014-06-10 Published:2014-06-20

Abstract: In terms of surrounding rock control in large section open-off cut, open-off cut No. 5206 in a mine is selected as study case. The principal stress difference, deformation and fracture field are studied in the process of width from 6 m to 10 m with UDEC. Research results show that: the principal stress differences increase gradually in shallow part and decrease in depth. With the width increasing, the maximal principal stress difference maintains a constant level at first, then decreases gradually in the roof, and decreases at first, then remains constant in the floor, and increases gradually in the rib. The moving range of peak: rib>roof>floor. The curve of displacement in roof decrease exponentially, but has obvious inflection point, which decrease terracedly in the floor. The maximal surface displacement: roof>side walls>floor. The fracture field is divided into three areas: fracture transfixion area, fracture area and microfracture area, which are all distributed as semi-ellipse, the extent of cut through:middle part>two sides and shallow part>deep part. It is believed that high-performance bolt hold the slippage of fracture effectively. The double truss cable can be anchored in the shoulder angle area, which has no fracture, and pre-tension overlays the area. Also, the double truss cable can close the shallow part of roof and reduce principal stress difference. Based on above, a high strength and high pre-tension bolting support scheme of band net and double truss anchor are proposed. The open-off cut achieves self-stabilization after 10 days when it is dug out, the total roof separation is 3 mm, and the roof-to-floor relative convergence is 125 mm, both sides relative convergence is 94 mm.

Key words: principal stress difference, transfer, support

CLC Number: 

  • TD 823.25+3
[1] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[2] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[3] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
[4] XIU Nai-ling, YAN Yu-zhong, XU Yun, WANG Xin, GUAN Bao-shan, WANG Zhen, LIANG Tian-cheng, FU Hai-feng, TIAN Guo-rong, MENG Chuan-you, . Experimental study on conductivity of self-supporting shear fractures based on non-Darcy flow [J]. Rock and Soil Mechanics, 2019, 40(S1): 135-142.
[5] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[6] JIANG Qiang-qiang, JIAO Yu-yong, LUO Jin, WANG Hao, . Review and prospect on heat transfer and bearing performance of energy piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3351-3362.
[7] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[8] RUAN Yong-fen, GAO Chun-qin, LIU Ke-wen, JIA Rong-gu, DING Hai-tao, . Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine [J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669.
[9] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[10] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
[11] ZHU Ming-xing, DAI Guo-liang, GONG Wei-ming, WAN Zhi-hui, LU Hong-qian, . Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607.
[12] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[13] WANG Shi-quan, WEI Ming-li, HE Xing-xing, ZHANG Ting-ting, XUE Qiang, . Study of water transfer mechanism during sediment solidification process based on nuclear magnetic resonance technology [J]. Rock and Soil Mechanics, 2019, 40(5): 1778-1786.
[14] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, HOU Yan-dong, WANG Bin, GUO Zong-yun , WEI Hao-tian, . Mechanism of climate warming on thermal-moisture dynamics of active permafrost layer considering effect of rainfall [J]. Rock and Soil Mechanics, 2019, 40(5): 1983-1993.
[15] XU Chen-yu, BAI Bing, LIU Ming-ze, . Experimental study of the fracture characteristics of granite under CO2 injection condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1474-1482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[4] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[5] XIA Li-nong , MIAO Yun-dong , TAN Tie-qiang. Three-dimensional finite element analysis of negative skin friction behaviors in pile groups with cap[J]. , 2012, 33(3): 887 -891 .
[6] DONG Zhi-liang, ZHOU Qi, ZHANG Gong-xin, QIU Qing-chang, LUO Yan, LI Yan. Field comparison test of reinforcement technology of shallow ultra-soft soil in Tianjin Binhai New Area[J]. , 2012, 33(5): 1306 -1312 .
[7] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .
[8] TAN Zhong-sheng , LI Jian , ZHUO Yue , ZHANG Peng . Test study of waterproof effect of nonwoven fabrics on subsea tunnel lining[J]. , 2012, 33(7): 1927 -1932 .
[9] LIU Hong-yan ,HUANG Yu-shi ,LI Kai-bing ,ZHANG Ji-hong . Test study of strength and failure mode of pre-existing jointed rock mass[J]. , 2013, 34(5): 1235 -1241 .
[10] JIA Yan-jie,JIANG Ping,TONG Hua. 3D mechanical modeling of soil orthogonal cutting under a single reamer cutter based on Drucker-Prager criterion[J]. , 2013, 34(5): 1429 -1436 .