›› 2014, Vol. 35 ›› Issue (S2): 168-172.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic thickening characteristics and mathematical model of total tailings

WANG Yong1, 2, WU Ai-xiang1, 2, WANG Hong-jiang2, ZHOU Bo2   

  1. 1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of High Efficient Mining and Safety of Metal, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2013-08-07 Online:2014-10-31 Published:2014-11-12

Abstract: The key equipment of thickening process in the action of cemented paste backfill (CPB) is deep cone thickener (DCT). The underflow mass fraction of DCT is significant related to the slurry pressure. And the void ratio is an important representation parameter of the underflow mass fraction. However, the change rule between the void ratio and the slurry pressure is not clear. For the interpretation of the problem aforementioned, a new concept for the tailings thickening degree is proposed and named as effective void ratio (EVR). The EVR is referred to void ratio minus saturated void ratio. A total tailings dynamic thickening experiment is conducted. The results show that the slurry pressure is between 2 477-4 410 Pa as the slurry height is between 31-200 mm. The underflow mass fraction is calculated as 73.26%-78.30%, which corresponding the EVR is 0.433-0.191. The regression result indicates that EVR and slurry pressure follow the power function. Moreover, the paste dynamic thickening model is proposed. According to this proposed model, the paste dynamic thickening behaviour is divided into three processes: (1) linear thickening zone, with the increasing of slurry pressure, the void ratio decreases quickly almost as linear, (2) attenuation compression zone, with the slurry pressure increasing continues, the void ratio decreases gradually and the paste tends to be saturated, (3) constant thickening zone, the tailings achieve saturated state and the void ratio become constant. This study reveals the change rule between the void ratio and slurry pressure in the process of thickening and provides the theoretical foundation for the thickener design and operation.

Key words: deep cone thickener, paste, slurry pressure, void ratio, mathematical model

CLC Number: 

  • TD 853,TD 854
[1] KE Wen-hai, GUAN Ling-xiao, LIU Dong-hai, DENG Jian-lin, LI Ke, XU Chang-jie, . Research on upper pipeline-soil interaction induced by shield tunnelling [J]. Rock and Soil Mechanics, 2020, 41(1): 221-228.
[2] WANG Long, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Compression model for cohesionless soils and its verification [J]. Rock and Soil Mechanics, 2020, 41(1): 229-234.
[3] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[4] ZHU Yu-meng, WU Qi, CHEN Guo-xing, . Experimental investigation on shear wave velocity of sand-silt mixtures based on the theory of inter-grain contact state [J]. Rock and Soil Mechanics, 2019, 40(4): 1457-1464.
[5] WANG Li-qin, SHAO Sheng-jun, WANG Shuai, ZHAO Cong, SHI Peng-xin, ZHOU Biao, . Compression curve characteristic of undisturbed loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1076-1084.
[6] LIU Gang, LU Rui, ZHAO Ming-zhi, LUO Qiang, LÜ Chao, . Ellipsoid model based packing characteristics analysis of round gravels [J]. Rock and Soil Mechanics, 2019, 40(11): 4371-4379.
[7] SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Comparative study of microbially induced carbonate precipitation under low temperature conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 224-230.
[8] GUO Lin-ping, KONG Ling-wei, XU Chao, YANG Ai-wu,. Preliminary study of quantitative relationships between physical and mechanical indices of granite residual soil in Xiamen [J]. , 2018, 39(S1): 175-180.
[9] WANG Hai-bo, WU Qi, YANG Ping,. Effect of fines content on liquefaction resistance of saturated sandy soils [J]. , 2018, 39(8): 2771-2779.
[10] SONG Yun-qi, WU Chao-jun, YE Guan-lin,. Permeability and anisotropy of upper Shanghai clays [J]. , 2018, 39(6): 2139-2144.
[11] FANG Jin-jin, FENG Yi-xin, ZHU Chang-xing,. Mechanical characteristics of Q3 intact loess in true triaxial tests [J]. , 2018, 39(5): 1699-1708.
[12] CHEN Bo, SUN De-an, GAO You, LI Jian,. Experimental study of pore-size distribution of Shanghai soft clay [J]. , 2017, 38(9): 2523-2530.
[13] QIAN Kun , WANG Xin-zhi , CHEN Jian-wen , LIU Peng-jun,. Experimental study on permeability of calcareous sand for islands in the South China Sea [J]. , 2017, 38(6): 1557-1564.
[14] SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WANG Cheng-cheng, . Experimental study of solidifying sand using microbial-induced calcium carbonate precipitation [J]. , 2017, 38(11): 3225-3230.
[15] SUN Wen-jing, LIU Shi-qing, SUN De-an, WEI Zhen-fei. Influence of sand mixing ratio on swelling characteristics of bentonite-sand mixtures [J]. , 2016, 37(6): 1642-1648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[8] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[9] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[10] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .