›› 2014, Vol. 35 ›› Issue (6): 1671-1678.

• Geotechnical Engineering • Previous Articles     Next Articles

Field test research on method for connecting embankment retaining wall and prestressed pipe piles

LI Guo-wei1, 2, SU Jian-bin2, HE Guan-jun3, MA Peng-zhen4   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 2. Highway and Railway Research Institute, Hohai University, Nanjing 210098, China, 3. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 4. School of Enviroment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2013-10-21 Online:2014-06-10 Published:2014-06-20

Abstract: The advantage of high quality assurance rate and good compression resistance of PHC pipe pile can be exploited by using them in the foundation of retaining wall of embankments. It puts forward a new research about the connection mode between PHC pile and retaining wall base. Based on in-situ tests in Guang-Qing Expressway extension project, the mechanism of the connection between the base of retaining wall and PHC pile is studied. Two connecting mechanisms, one with cover plate, called the cushion type and the other without cover plate, called embedded type, are studied. The research suggests that both cushion type and embedded connection between PHC pile foundation soil bear the main load, embedded links between pile and pile soil stress are larger, which are about twice of the cushion type, bearing capacity rate difference of inside and outside the pile for embedded type is more apparently. Deflection of the retaining wall cannot be prevented with the cushion type connecting mechanism, as opposite to the embedded type, in which the wall can be kept in a stable state by the constraint resulting from the piles. For both connecting types, the base of the retaining wall bears tension force along the embankment direction and non zero-compression zones exist in this surface. There is very little difference in horizontal displacement for two connecting types, and the horizontal load is mainly carried by the soils around the piles.

Key words: retaining wall, PHC pipe pile, cushion type, embedded type, connection mode

CLC Number: 

  • TU 476+.4
[1] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[2] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[3] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[4] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[5] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[6] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
[7] WANG Jia-quan, XU Liang-jie, HUANG Shi-bin, LIU Zheng-quan. Bearing capacity analysis of geogrid reinforced abutment retaining wall under dynamic load [J]. Rock and Soil Mechanics, 2019, 40(11): 4220-4228.
[8] ZHANG Xiao-xi, HE Si-ming, FAN Xiao-yi, . Seismic stability of L-shape retaining walls and determination method of sliding surface [J]. Rock and Soil Mechanics, 2019, 40(10): 4011-4020.
[9] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[10] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[11] LI Zhao-hua, HU Jie, FENG Ji-li, GONG Wen-jun. Numerical simulation of debris flow based on visco-elastoplastic constitutive model [J]. , 2018, 39(S1): 513-520.
[12] YANG Shan-qi, LU Kun-lin, SHI Ke-bao, ZHAO Han-tian, CHEN Yi-ming,. Model tests on 3D slip surface of passive failure behind a rigid retaining wall [J]. , 2018, 39(9): 3303-3312.
[13] XU Peng, JIANG Guan-lu, QIU Jun-jie, LIN Zhan-zhan, WANG Zhi-meng,. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method [J]. , 2018, 39(8): 2765-2770.
[14] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
[15] LI Li-hua, SHI An-ning, XIAO Heng-lin, HU Zhi, YANG Jun-chao, YU Chang-dao. Model test and mechanical properties study of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2018, 39(12): 4360-4368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .