Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (12): 3227-3237.doi: 10.16285/j.rsm.2021.0548

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shaking table test of time-history response of rock-socketed single pile under strong earthquake

FENG Zhong-ju1, 2, ZHANG Cong1, 2, HE Jing-bin3, DONG Yun-xiu4, YUAN Feng-bin5   

  1. 1. Key Laboratory for Special Area High Way Engineering of the Ministry of Education, Chang’an University, Xi’an, Shaanxi 710064, China; 2. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 3. Engineering Experiment Monitoring Institute, Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi 710064, China; 4. School of Civil Engineering, Longdong University, Qingyang, Gansu 745000, China; 5. China Highway Engineering Consultants Corporation, Beijing 100089, China
  • Received:2021-04-14 Revised:2021-06-24 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51708040), the Fundamental Research Funds for the Central Universities, CHD (300102218115) and the Hainan Provincial Transportation Science and Technology Project (HNZXY2015-045R).

Abstract: To explore the time-history response laws of pile foundation under different types of seismic waves, the pile acceleration of rock-socketed single pile foundation, relative displacement of pile top, bending moment of pile body and damage of pile foundation under the action of artificially synthesized 5010 waves, 5002 waves, Kobe waves and El-Centro waves with an intensity of 0.35g were studied through the shaking table test. The test results show that the dynamic response characteristics of rock-socketed single pile foundation are related to the spectrum characteristics of input seismic waves. The acceleration response of the pile top significantly lags behind that of the pile bottom, and the peak acceleration of the pile reaches the maximum value under the action of El-Centro waves. The relative displacement of the pile top is the largest when inputting Kobe waves, and the peak value appears earliest when inputting El-Centro waves. The maximum bending moment of the pile does not exceed the bending bearing capacity of the pile foundation, and there is no damage to the pile foundation. In the anti-seismic design of pile foundation, the type of seismic waves can be reasonably selected according to the corresponding checking content, and the corresponding engineering suggestions are proposed.

Key words: piles foundation, strong earthquake, shaking table test, time-history response

CLC Number: 

  • TU473
[1] HE Jiang, XIAO Shi-guo, . Calculation method for seismic permanent displacement of assembled multi-step cantilever retaining walls [J]. Rock and Soil Mechanics, 2021, 42(7): 1971-1982.
[2] LAI Tian-wen, LEI Hao, WU Zhi-xin, WU Hong-gang, . Shaking table test study on basalt fiber reinforced plastics in high slope protection [J]. Rock and Soil Mechanics, 2021, 42(2): 390-400.
[3] XU Chao, LUO Min-min, REN Fei-fan, SHEN Pan-pan, YANG Zi-fan. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures [J]. Rock and Soil Mechanics, 2020, 41(S1): 179-186.
[4] LI Fu-xiu, WU Zhi-jian, YAN Wu-jian, ZHAO Duo-yin, . Research on dynamic response characteristics of loess tableland slopes based on shaking table test [J]. Rock and Soil Mechanics, 2020, 41(9): 2880-2890.
[5] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Study on solid-liquid phase transition characteristics of saturated sand based on large shaking table test on free field [J]. Rock and Soil Mechanics, 2020, 41(7): 2189-2198.
[6] YANG Chang-wei, TONG Xin-hao, WANG Dong, TAN Xin-rong, GUO Xue-yan, CAO Li-cong, . Shaking table test of dynamic response law of subgrade with ballast track under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2215-2223.
[7] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[8] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[9] REN Yang, LI Tian-bin, LAI Lin. Centrifugal shaking table test on dynamic response characteristics of tunnel entrance slope in strong earthquake area [J]. Rock and Soil Mechanics, 2020, 41(5): 1605-1612.
[10] HAN Jun-yan, LI Man-jun, ZHONG Zi-lan, XU Jing-shu, LI Li-yun, LAN Jing-yan, DU Xiu-li. Seismic response of soil under non-uniform excitation based on shaking table test of buried pipelines [J]. Rock and Soil Mechanics, 2020, 41(5): 1653-1662.
[11] ZHANG Lu-ming, ZHOU Yong, FAN Gang, CAI Hong-yu, DONG Yun. Seismic behavior research and reinforcement effect evaluation of composite retaining structures with nuclear safety level anti-dip layered soft rock slope under strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(5): 1740-1749.
[12] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[13] LI Ping, ZHANG Yu-dong, BO Tao, GU Jun-ru, ZHU Sheng. Study of ground motion effect of trapezoidal valley site based on centrifuge shaking table test [J]. Rock and Soil Mechanics, 2020, 41(4): 1270-1278.
[14] FENG Li, DING Xuan-ming, WANG Cheng-long, CHEN Zhi-xiong. Shaking table model test on seismic responses of utility tunnel with joint [J]. Rock and Soil Mechanics, 2020, 41(4): 1295-1304.
[15] ZHANG Heng-yuan, QIAN De-ling, SHEN Chao, DAI Qi-quan. Experimental investigation on dynamic response of pile group foundation on liquefiable ground subjected to horizontal and vertical earthquake excitations [J]. Rock and Soil Mechanics, 2020, 41(3): 905-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Ming-ming, WANG Zhi-yin, MA Lan-ping, ZENG Zhi-hua, ZHANG Zhi-pei. Study of design parameters of oil-gas pipeline traversing loess gully[J]. , 2010, 31(4): 1314 -1318 .
[2] LIN Hang,CAO Ping,LI Jiang-teng,JIANG Xue-liang,HE Zhong-ming. Deformation stability of three-dimensional slope based on Hoek-Brown criterion[J]. , 2010, 31(11): 3656 -3660 .
[3] LI Jun-cai,JI Guang-qiang,SONG Gui-hua,ZHANG Qiong,WANG Zhi-liang,YAN Xiao-min. In-situ measurement and analysis of sparse pile-raft foundation of high-rise building[J]. , 2009, 30(4): 1018 -1022 .
[4] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
[5] NIU Wen-jie,YE Wei-min,LIU Shao-gang,YU Hai-tao. Limit analysis of a soil slope considering saturated-unsaturated seepage[J]. , 2009, 30(8): 2477 -2482 .
[6] YIN Hong-lei,XU Qian-jun,LI Zhong-kui. Effect of swelling deformation on stability of expansive soil slope[J]. , 2009, 30(8): 2506 -2510 .
[7] WANG Ke-liang, LIU Ling, SUI Tong-bo , XU Yun-hai, HU Ting-zheng. Experiment research on anti-shear(cut)performance of dam bedrock-rubber powder modified concrete in-situ[J]. , 2011, 32(3): 753 -756 .
[8] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
[9] LI Hui , YAN E-chuan , YANG Jian-guo , Lü Kun . Study of interaction of landslide mass and retaining wall under condition of reservoir water[J]. , 2012, 33(5): 1593 -1600 .
[10] HU Chang-ming , MEI Yuan , WANG Xue-yan . Experimental research on dynamic compaction parameters of collapsible loess foundation in Lishi region[J]. , 2012, 33(10): 2903 -2909 .