Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (4): 1065-1074.doi: 10.16285/j.rsm.2022.0968

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Uniaxial compression test of frozen sand considering the effect of the deposition angle

LIANG Jing-yu1, SHEN Wan-tao1, LU De-chun2, QI Ji-lin1   

  1. 1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2022-06-27 Accepted:2022-08-29 Online:2023-04-18 Published:2023-04-28
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52108294, 41972279, 52025084), the Beijing Postdoctoral Research Foundation (2021-zz-116) and the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(X21077).

Abstract: Soil particles in cold regions are deposited and arranged along the dominant direction due to gravity, forming transversely isotropic frozen soils. Without considering the effect of the deposition angle between the deposition direction and the load direction, the deformation characteristics and bearing capacity of the actual geotechnical engineering in cold regions may be misestimated. However, the effect of deposition angle on the mechanical properties of frozen soil has not been explored in the existing literature. In response to this problem, the uniaxial compressive tests under different temperature conditions were carried out in this paper to examine the effect of deposition angle on the mechanical behaviors of frozen soil. With the developed sample preparation mould, frozen soil samples with four different deposition angles δ (δ = 0º, 30º, 60º and 90º) were prepared. Uniaxial compression tests on these frozen soil samples were carried out at four different temperature conditions T (T = −5, −10, −15 ℃ and −20 ℃). The significant effects of T and δ  on deformation mode, failure behaviors and uniaxial compressive strength of frozen soil are analyzed. The uniaxial compressive stress-strain curves of frozen soil at certain T and δ are normalized, and the slope variation rule of the softened section is also analyzed. According to the above analysis, the deformation modes of the frozen soil under the effect of T andδ  are divided into three deformation modes, i.e., I, II and III. According to the test results, it can be observed that as T decreases and δ  tends to 60º, the deformation mode of frozen soil tends to transition from deformation mode I to deformation mode III, and the failure model tends to transition from the expansion failure mode with the X-shaped shear band to the single shear plane failure mode with a smaller failure range. The uniaxial compressive strength of frozen soil increases with the decrease of T, and shows a trend of first decreasing and then increasing with the increase of δ .

Key words: transversely isotropy, deposition angle, frozen soil, uniaxial compression test, mechanical properties

CLC Number: 

  • TU445
[1] LI Bo-nan, FU Wei, ZHANG Xue-bing, . Propagation characteristics of elastic waves in warm ice-rich frozen soil [J]. Rock and Soil Mechanics, 2023, 44(7): 1916-1924.
[2] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[3] WANG Jia-quan, ZHONG Wen-tao, HUANG Shi-bin, TANG Yi, . Experimental study on static and dynamic performances of modular reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2023, 44(5): 1435-1444.
[4] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
[5] ZHANG Ping, REN Song, ZHANG Chuang, WU Fei, LONG Neng-zeng, LI Kai-xin, . Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature [J]. Rock and Soil Mechanics, 2023, 44(3): 771-783.
[6] JIANG Hui-peng, MA Qiang, CAO Ya-peng, . Study on the reflection and transmission of P wave on the interface between elastic medium and saturated frozen soil medium [J]. Rock and Soil Mechanics, 2023, 44(3): 916-929.
[7] GUO Jia-qi, CHENG Li-pan, ZHU Bin-zhong, TIAN Yong-chao, HUANG Xin. Shear mechanical properties and energy characteristics of rock joints under continuous excavation effect [J]. Rock and Soil Mechanics, 2023, 44(1): 131-143.
[8] HUANG Xian-wen, YAO Zhi-shu, CAI Hai-bing, LI Kai-qi, TANG Chu-xuan. Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling [J]. Rock and Soil Mechanics, 2023, 44(1): 193-205.
[9] WANG Qing-yu, TENG Ji-dong, ZHONG Yu, ZHANG Sheng, SHENG Dai-chao, . Mesoscale simulation of pore ice formation in saturated frozen soil by using lattice Boltzmann method [J]. Rock and Soil Mechanics, 2023, 44(1): 317-326.
[10] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[11] CHEN Guang-bo, ZHANG Jun-wen, HE Yong-liang, ZHANG Guo-hua, LI Tan, . Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body [J]. Rock and Soil Mechanics, 2022, 43(S2): 130-143.
[12] HOU Yong-qiang, YIN Sheng-hua, YANG Shi-xing, ZHANG Min-zhe, LIU Hong-bin, . Mechanical response and energy damage evolution process of cemented backfill under impact loading [J]. Rock and Soil Mechanics, 2022, 43(S1): 145-156.
[13] MA Li-yao, HU Bin, CHEN Yong, CUI Kai, DING Jing, . Shear-seepage properties of intact argillaceous shale under different injection water pressures [J]. Rock and Soil Mechanics, 2022, 43(9): 2515-2524.
[14] LIU Xu-feng, ZHOU Yang-yi, . Experimental study on mechanical properties of layered hard schist under multiaxial compression [J]. Rock and Soil Mechanics, 2022, 43(8): 2213-2221.
[15] ZHONG Wen, ZHU Wen-tao, ZENG Peng, HUANG Zhen, , WANG Xiao-jun, , GUO Zhong-qun, HU Kai-jian, . Experimental study of the influence of leaching mining on mechanical properties of ionic rare earth ore floor bedrock [J]. Rock and Soil Mechanics, 2022, 43(6): 1481-1492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Guang-yong,GU Jin-cai,CHEN An-min,XU Jing-mao,ZHANG Xiang-yang. Research on explosion resisting performance of tunnels reinforced by fully bonded rock bolts in model test[J]. , 2010, 31(1): 107 -112 .
[2] LIU Wei-zheng, SHI Ming-lei. Structural characteristic and engineering effect analysis of Yangtze River backswamp soft soil[J]. , 2010, 31(2): 427 -432 .
[3] YANG Lei, HE Wei-min, ZHOU Yang, ZHANG Qing-ming. Optimal design of deep-mixing pile composite foundation[J]. , 2010, 31(8): 2575 -2579 .
[4] CHI Fu-dong, WANG Jin-ting, JIN Feng, WANG Qiang. Real-time dynamic hybrid testing for soil-structure-fluid interaction analysis[J]. , 2010, 31(12): 3765 -3770 .
[5] AI Zhi-yong, CHENG Zhi-yong. Analysis of axially loaded pile in layered soils by boundary element method[J]. , 2009, 30(5): 1522 -1526 .
[6] WU Zhen-jun,GE Xiu-run. Solving vector sum factor of safety of slope by method of slices[J]. , 2009, 30(8): 2337 -2342 .
[7] XU Hai-qing , FU Zhi-feng , LIANG Li-gang , WANG Guo-bo , CHEN Liang. Ambient vibration analysis of adjacent perpendicular multi-tunnels under train loads[J]. , 2011, 32(6): 1869 -1873 .
[8] CHEN Jin-gang , XU Ping , ZHANG Yan , LI Ya-bang. Experimental research on pre-peak constitutive relation of filled fracture with expansive medium[J]. , 2011, 32(10): 2998 -3003 .
[9] LUO Yu-long, WU Qiang, ZHAN Mei-li, SHENG Jin-chang. Study of critical piping hydraulic gradient of suspended cut-off wall and sand gravel foundation under different stress states[J]. , 2012, 33(S1): 73 -78 .
[10] ZHANG Zhi-chao ,CHEN Yu-min ,LIU Han-long . Numerical analysis and evaluation of simulation of nature earthquake by millisecond blasting technique[J]. , 2013, 34(1): 265 -274 .