Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (5): 1501-1511.doi: 10.16285/j.rsm.2022.0838

• Geotechnical Engineering • Previous Articles     Next Articles

Influence of soil secondary nonlinearity on 3D seismic responses of a pile-founded nuclear island structure

ZHU Sheng-dong1, CHEN Guo-xing1, 2, CHEN Wei-yun3, GAO Wen-sheng4, LI Wen-biao1   

  1. 1. Institute of Geotechnical Engineering, Nanjing Tech. University, Nanjing, Jiangsu 210009, China; 2. Civil Engineering and Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing, Jiangsu 210009, China; 3. School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China; 4. China Academy of Building Research, Beijing 100013, China
  • Received:2022-06-01 Accepted:2022-08-15 Online:2023-05-09 Published:2023-05-03
  • Supported by:
    This work was supported by the National Key R&D Project of China (2018YFC1504301).

Abstract: With the rapid development of nuclear power plant constructions, it has become an unavoidable issue to choose a soil site as the plant site. Soil-pile-structure interaction (SPSI) effect has an important influence on the seismic safety evaluation of a nuclear island structure (NIS). A 3D integrated simulation method is developed to evaluate the seismic responses of a pile-mat-founded AP1000 nuclear-island building system subjected to multidirectional earthquake motions. Considering the regional tectonic setting and historical seismicity around the plant site, a set of three-component recordings for scenarios near-field moderate-strong, moderate-far field strong, and far-field large earthquakes are selected and justified for determining the bedrock shakings used in this study. The whole nonlinearity including both the primary and secondary nonlinearities of soil and only the primary nonlinearity of soil are considered by one-step method and two-step method for performing the 3D response analysis of the SPSI system, respectively. The quantitative influence of soil secondary nonlinearity (SSN) on the NIS seismic responses (i.e., SSN effect) under earthquake scenarios can be obtained by comparing the results obtained from the above two methods. A finding is that the influences of SSN on the horizontal seismic responses of NIS are obviously greater than those of the vertical ones of NIS, and the SSN effect makes the SPSI system more flexible. The SSN effect is strongly related to the characteristics of bedrock shaking scenarios and is the largest under the near-field moderate-strong earthquake scenarios. Given SSN effect can significantly increase the NIS seismic responses, the SSN effect should not be ignored in the NIS seismic design.

Key words: nuclear island structure, seismic response, soil secondary nonlinearity, soil-pile-structure interaction

CLC Number: 

  • TU 473
[1] SHEN Hui, LIU Ya-qun, LIU Bo, LI Hai-bo, . Numerical study on the amplification effect of rock slopes under oblique incidence of seismic waves [J]. Rock and Soil Mechanics, 2023, 44(7): 2129-2142.
[2] JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, SONG Ji, SU Zhuo-lin, . Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites [J]. Rock and Soil Mechanics, 2023, 44(6): 1837-1848.
[3] ZHENG Chang-jie, CUI Yi-qin, WU Chen, LUO Tong, LUAN Lu-bao, . Simplified analytical solution for horizontal seismic response of single piles to vertically incident S waves [J]. Rock and Soil Mechanics, 2023, 44(2): 327-336.
[4] HU Yao, LEI Hua-yang, LEI Zheng, LIU Ying-nan, . Shaking table test on seismic response of stacked tunnels under three-directional earthquake wave excitation [J]. Rock and Soil Mechanics, 2022, 43(S2): 104-116.
[5] ZHONG Zi-lan, SHI Yue-bo, LI Jin-qiang, ZHAO Mi, DU Xiu-li. Stochastic seismic response analysis of engineering site considering correlations of critical soil dynamic parameters [J]. Rock and Soil Mechanics, 2022, 43(7): 2015-2024.
[6] AN Jun-hai, TAO Lian-jin, JIANG Lu-zhen, . A shaking table-based experimental study on seismic response of a shield- enlarge-dig type subway station structure [J]. Rock and Soil Mechanics, 2022, 43(5): 1277-1288.
[7] PENG Gang, LIU Yun-long, CHEN Deng-hong, HOU Chun-ping, LIN Tian-cheng, LIU Yun-hui, . Study on the dam-foundation dynamic interaction based on artificial boundary of perfectly matched layer [J]. Rock and Soil Mechanics, 2022, 43(11): 3144-3152.
[8] CHEN Shi-jie, XIAO Ming, WANG Xiao-wei, CHEN Jun-tao, . Numerical analysis of seismic damage characteristics of an underground cavern intersected by a steeply dipped fault [J]. Rock and Soil Mechanics, 2021, 42(9): 2600-2610.
[9] ZHU Sai-nan, LI Wei-hua, LEE Vincent W, ZHAO Cheng-gang, . Analytical solution of seismic response of an undersea cavity under incident P1-wave [J]. Rock and Soil Mechanics, 2021, 42(1): 93-103.
[10] HAN Jun-yan, LI Man-jun, ZHONG Zi-lan, XU Jing-shu, LI Li-yun, LAN Jing-yan, DU Xiu-li. Seismic response of soil under non-uniform excitation based on shaking table test of buried pipelines [J]. Rock and Soil Mechanics, 2020, 41(5): 1653-1662.
[11] PAN Dan-guang, CHENG Ye, CHEN Qing-jun. Shaking table test of the effect of underground shopping mall structure on ground motion [J]. Rock and Soil Mechanics, 2020, 41(4): 1134-1145.
[12] HAN Jun-yan, ZHONG Zi-lan, LI Li-yun, ZHAO Mi, WAN Ning-tan, DU Xiu-li. Nonlinear seismic response of free-field soil under longitudinal non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(7): 2581-2592.
[13] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[14] SUN Guang-chen, XIE Jia-you, HE Shan, FU He-lin, JIANG Xue-liang, ZHENG Liang, . Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(3): 893-902.
[15] XU Zi-gang, DU Xiu-li, XU Cheng-shun, ZHANG Chi-yu, JIANG Jia-wei. Comparison of determination methods of site Rayleigh damping coefficients in seismic responses analysis of underground structures [J]. Rock and Soil Mechanics, 2019, 40(12): 4838-4847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .