Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (8): 2369-2380.doi: 10.16285/j.rsm.2022.1366

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Post-peak fracture-bearing characteristics and fragmentation distribution of sandy mudstone

XIN Zi-peng, CHAI Zhao-yun, SUN Hao-cheng, LI Tian-yu, LIU Xin-yu, DUAN Bi-ying   

  1. Key Laboratory of In-situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2022-09-04 Accepted:2023-02-07 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52274091, 51974193).

Abstract: The deformation-bearing law of rock at the post-peak stage is of great significance to the stability control of the surrounding rock in the fragmented zone of the roadway. To study the rupture evolution and bearing characteristics at the post-peak stage of the rock, the uniaxial compression tests with different multiples of the peak strain value as the control strain were carried out on sandy mudstone, and the nonlinear fractal theory was applied to elucidate the distribution pattern of the post-peak ruptured masses. Based on the test results, a mechanical analytical model for rock samples containing penetrating fracture surfaces in the post-peak phase was established. The results show that: (1) The complete stress-strain curve of sandy mudstone presents two forms of post-peak stress drop, i.e. "single peak" and "multi-peak". (2) The post-peak specimen damage mode gradually changes from tensile damage under low-multiples peak strain to shear slip damage under high-multiples peak strain. (3) The fractal dimension of the internal fragments of the specimen is greater than that of the surface fragments for the same strain, and both of them have a significant positive correlation with the multiple of the post-peak strain of the specimen. (4) The continuous failure mode of rock at the post-peak stage is related to the characteristics of the contact fracture surface between fragments, and the fragments will only slide along the fracture surface within a certain dip angle range. The established analytical model can accurately explain the fracture-bearing characteristics and fragmentation distribution of the sandy mudstone at the post-peak stage.

Key words: rock mechanics, excavation damaged zone, post-peak bearing, fragment, fractal dimension

CLC Number: 

  • TU 452
[1] LIU Shang, LIU Ri-cheng, LI Shu-chen, YU Li-yuan, HU Ming-hui. Experimental study on evolution of normal stiffness of granite joints treated by chemical corrosion [J]. Rock and Soil Mechanics, 2023, 44(9): 2509-2524.
[2] ZHOU Jian, SHANG Xiao-nan, LIU Fu-shen, SHEN Jun-yi, LIAO Xing-chuan, . Numerical simulation of three-dimensional rock fragmentation by disc cutters of tunnel boring mechine using peridynamics [J]. Rock and Soil Mechanics, 2023, 44(9): 2732-2743.
[3] WANG Hong-jian, CUI Yan-zong, YUAN Guang-xiang, ZHAO Fei, ZHANG Yi-yu, HUANG Zhi-quan, . Fractal characteristics analysis of granite with different weathering degrees based on uniaxial compression experiment [J]. Rock and Soil Mechanics, 2023, 44(8): 2249-2265.
[4] LUO Zuo-sen, ZHU Zuo-xiang, SU Qing, LI Jian-lin, DENG Hua-feng, YANG Chao, . Creep simulation and deterioration mechanism of sandstone under water-rock interaction based on parallel bond model [J]. Rock and Soil Mechanics, 2023, 44(8): 2445-2457.
[5] ZHAO Guang-ming, LIU Zhi-xi, MENG Xiang-rui, ZHANG Ruo-fei, GU Qing-heng, QI Min-jie, . Energy evolution of sandstone under true triaxial cyclic principal stress [J]. Rock and Soil Mechanics, 2023, 44(7): 1875-1890.
[6] YU Yang, WANG Ze-hua, TANG Cai-xuan. Energy evolution and fractal characteristics of acid corroded granite under uniaxial compression [J]. Rock and Soil Mechanics, 2023, 44(7): 1971-1982.
[7] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[8] WANG Wei, ZHANG Kuan, CAO Ya-jun, CHEN Chao, ZHU Qi-zhi, . Anisotropic mechanical properties and brittleness evaluation of layered phyllite [J]. Rock and Soil Mechanics, 2023, 44(4): 975-989.
[9] TIAN Shi-xuan, GUO Bao-hua, SUN Jie-hao, CHENG Tan, . Effect of shear rate on shear mechanical properties of rock-like joints under different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 541-551.
[10] XIAO Wei-min, LIN Xin, ZHONG Jian-min, LI Shuang, ZHU Zhan-yuan, . Experimental study on rock joint permeability evolution during plugging process by microbially induced calcite precipitation [J]. Rock and Soil Mechanics, 2023, 44(10): 2798-2808.
[11] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Shear mechanical properties of rock joints under pre-peak cyclic shearing condition [J]. Rock and Soil Mechanics, 2022, 43(S2): 52-62.
[12] FENG Chen, LI Jiang-shan, LIU Jin-du, XUE Qiang, . Experimental study on the compaction characteristics and microstructure of arsenic and cadmium co-contaminated soil [J]. Rock and Soil Mechanics, 2022, 43(S2): 171-182.
[13] ZHANG Tao, XU Wei-ya, MENG Qing-xiang, WANG Huan-ling, YAN Long, QIAN Kun, . Experimental investigation on the mechanical characteristics of columnar jointed rock mass samples based on 3D printing technology [J]. Rock and Soil Mechanics, 2022, 43(S2): 245-254.
[14] WANG Li, NI Bin, XIE Wei, WANG Shu-zhao, KOU Kun, ZHAO Kui, . Microscopic-macroscopic crack evolution mechanism of yellow sandstone with different particle sizes [J]. Rock and Soil Mechanics, 2022, 43(S2): 373-381.
[15] CEN Duo-feng, LIU Chang, HUANG Da. Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation [J]. Rock and Soil Mechanics, 2022, 43(S1): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] DU Zuo-long, HUANG Mao-song, LI Zao. DCM-based on ground loss for response of group piles induced by tunneling[J]. , 2009, 30(10): 3043 -3047 .
[4] KONG Wei-xue,RUI Yong-qin,DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. , 2009, 30(11): 3278 -3282 .
[5] ZHOU Huo-yao,SHI Jian-yong. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay[J]. , 2009, 30(11): 3291 -3296 .
[6] ZHAI Ju-yun,WEI Guo-xiang. Influence of dry density on moisture migration parameter of unsaturated expansive soil[J]. , 2009, 30(11): 3337 -3341 .
[7] MA Qing,ZHAO Jun-hai,WEI Xue-ying. Investigation of rock resistant coefficient in rocks around tunnel based on unified strength theory[J]. , 2009, 30(11): 3393 -3398 .
[8] QI Le,SHI Jian-yong,CAO Quan. Method for calculating rational thickness of cushion in rigid pile composite ground[J]. , 2009, 30(11): 3423 -3428 .
[9] WANG Li,ZHENG Gang. Research on vertical bearing capacity of partially inclined pile with finite element method[J]. , 2009, 30(11): 3533 -3538 .
[10] ZHANG Qiang-yong, LIU De-jun, JIA Chao, SHEN Xin, LIU Jian, DUAN Kang. Development of geomechanical model similitude material for salt rock oil-gas storage medium[J]. , 2009, 30(12): 3581 -3586 .