›› 2010, Vol. 31 ›› Issue (12): 3919-3927.

• Geotechnical Engineering • Previous Articles     Next Articles

Effects of deformation and failure of rock pillar No.3-2 of Longyou grottos on stress change of grotto No.3

WANG Xue-liang 1, 2, ZHANG Lu-qing 1, ZHANG Zhong-jian 1, 2, FU Yan3, LIU En-cong3, GAO Qian 1, 2   

  1. 1. Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 3. Longyou Culture and Tourism Administration Bureau of Longyou County, Quzhou, Zhejiang 324400, China
  • Received:2009-05-27 Online:2010-12-10 Published:2010-12-21

Abstract:

Longyou grottos, the ancient underground grottos with the characteristics of shallow embedding, large span and some others, have been attracting many experts of rock mechanics and engineering geology coming to research. Recently, many positions of the roof of grotto No.3 have the phenomenon of cracking and exfoliating. The data of strain meters installed on the steel pillars which have the function of supporting the grotto are also changed. What the strength of rock pillar No.3-2 decreasing leads to the adjusting of strength condition of rock around is thought to be one of the main reasons causing the changes mentioned above. With the aid of FLAC3D, the paper simulates the changes above caused by the strength decreasing of rock pillar No.3-2, using the main fundamentals of strength reduction technique for reference. The results of the numerical simulation explain the changes get by monitoring. Based on which, the paper analyzes the change of stress of the roof and other rock pillars of grottos No.3 in the process of deformation and failure of rock pillar No.3-2. By the research, the authors get the points: ① The strength of rock pillar No.3-2 has been decreased a little; and still it is in the process of continuous decreasing. ② The cracks on the roof will be longer and more in the process. The conclusions provide a basis for analyzing reasonably, forecasting the strength state of grottos and protecting the grottos in the process of deformation and failure of rock pillar No.3-2.

Key words: Longyou grottos, strength decreasing, stress change, FLAC3D, monitoring

CLC Number: 

  • TU 452
[1] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[2] ZHENG Shuai, JIANG An-nan, ZHANG Feng-rui, ZHANG Yong, SHEN Fa-yi, JIANG Xu-dong, . Dynamic classification method of surrounding rock and its engineering application based on machine learning and reliability algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 308-318.
[3] LI Qiao, MENG Fan-zeng, NIU Yuan-zhi. Bridge pier deformation and control technology of jacking framed bridge with loading under crossing high speed railway [J]. Rock and Soil Mechanics, 2019, 40(9): 3618-3624.
[4] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[5] CHEN Bing-rui, WU Hao, CHI Xiu-wen, LIU Hui, WU Meng-die, YAN Jun-wei, . Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application [J]. Rock and Soil Mechanics, 2019, 40(9): 3689-3696.
[6] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[7] LI Tong, FENG Xia-ting, WANG Rui, XIAO Ya-xun, WANG Yong, FENG Guang-liang, YAO Zhi-bin, NIU Wen-jing, . Characteristics of rockburst location deflection and its microseismic activities in a deep tunnel [J]. Rock and Soil Mechanics, 2019, 40(7): 2847-2854.
[8] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[9] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
[10] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[11] WANG Jian-feng, LI Tian-bin, MA Chun-chi, ZHANG Hang, HAN Yu-xuan, ZHOU Xiong-hua, JIANG Yu-peng, . Gravitational search algorithm based microseismic positioning in tunnel surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(11): 4421-4428.
[12] HOU Gong-yu, HAN Yu-chen, XIE Bing-bing, WEI Guang-qing, LI Zi-xiang, XIAO Hai-lin, ZHOU Tian-ci, . Pretension strain loss of fixed-point optical fiber in tunnel structural health monitoring [J]. Rock and Soil Mechanics, 2019, 40(10): 4120-4128.
[13] LIU Yong, FENG Shuai, QIN Zhi-meng. Similarity evaluation method of landslide monitoring points based on motion-angle-difference [J]. Rock and Soil Mechanics, 2019, 40(1): 288-296.
[14] JIANG Xiong, XU Nu-wen, ZHOU Zhong, HOU Dong-qi, LI Ang, ZHANG Min, . Failure mechanism of surrounding rock of bus-bar tunnels at Lianghekou hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2019, 40(1): 305-314.
[15] HE Hai-jie, LAN Ji-wu, GAO Wu, CHEN Yun-min, MA Peng-cheng, XIAO Dian-kun, . Application and analysis of compressed air drainage wells in landfill slip control [J]. Rock and Soil Mechanics, 2019, 40(1): 343-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[7] WANG Zhen-hong,ZHU Yue-ming,WU Quan-huai,ZHANG Yu-hui. Thermal parameters of concrete by test and back analysis[J]. , 2009, 30(6): 1821 -1825 .
[8] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[9] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[10] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .