›› 2018, Vol. 39 ›› Issue (5): 1720-1730.doi: 10.16285/j.rsm.2016.1436

• 基础理论与实验研究 • 上一篇    下一篇

基于土体三维波动模型的饱和土中管桩竖向振动

刘林超,肖琪聃,闫启方   

  1. 信阳师范学院 建筑与土木工程学院,河南 信阳 464000
  • 收稿日期:2016-06-14 出版日期:2018-05-11 发布日期:2018-06-12
  • 作者简介:刘林超,男,1979年生,博士,副教授,硕士生导师,主要从事黏弹性理论、岩土力学等方面的教学和科研工作
  • 基金资助:

    国家自然科学基金(No. U1504505);河南省科技发展计划项目(No. 142300410200);河南省高等学校青年骨干教师资助计划项目(No. 2013GGJS- 121);信阳师范学院南湖学者奖励计划青年项目(No. 201506);河南省高等学校重点科研项目(No. 15A560036)。

Vertical vibration of a single pipe pile in saturated soil with 3D wave model

LIU Lin-chao, XIAO Qi-dan, YAN Qi-fang   

  1. School of Architecture and Civil Engineering, Xinyang Normal University, Xinyang, Henan, 464000, China
  • Received:2016-06-14 Online:2018-05-11 Published:2018-06-12
  • Supported by:

    This work was supported by the National Nature Science Foundation of China (U1504505), Henan Foundation for Development of Science and Technology (142300410200), the Foundation for Outstanding Young Teachers in Higher Education Institutions of Henan Province (2013GGJS-121), Nanhu Scholars Program for Young Scholars of Xinyang Normal University (201506) and the Key Scientific Research Projects of Henan Province(15A560036).

摘要: 基于土体的三维波动模型研究了饱和土中单个管桩的竖向振动。将桩周土和桩芯土视为两相多孔介质,管桩视为等截面的圆管杆单元。在考虑桩周饱和土和桩芯饱和土径向位移和竖向位移的情况下,建立了基于土体三维波动模型的饱和土-管桩竖向耦合振动模型。借助势函数和分离变量法并考虑土体边界条件,求解了考虑土体三维波动的桩周饱和土和桩芯饱和土的竖向振动。在此基础上,考虑管桩桩端边界条件,利用三角函数正交性求解了饱和土中单个管桩的竖向振动,得到了管桩桩顶的竖向复刚度。通过数值算例,对比分析了土体三维波动模型解和不考虑土体径向位移的简化模型解的计算结果,分析了主要桩、土参数对饱和土中管桩竖向振动的影响。研究表明:当管桩壁较薄时且低频时不应忽略土体径向位移的影响,在动态刚度因子和等效阻尼随频率变化曲线峰值峰谷处不宜忽略土体液相的影响,管桩壁不宜过薄。管桩壁厚、长径比、桩芯饱和土与桩周饱和土密度比、剪切模量比以及桩-土模量比对饱和土中管桩竖向振动有较大影响,在进行管桩设计时需要综合考虑相关参数。

关键词: 三维波动模型, 饱和土, 管桩, 竖向振动, 复刚度

Abstract: The vertical vibration of a single pipe pile in saturated soil is studied with 3D wave model. The soil around pile and in the pile core are regarded as two-phase porous medium, and the pipe pile is regarded as uniform circular tube unit. A dynamic model of saturated soil-pipe pile with coupled vertical vibration is developed with soil 3D wave effect model. Considering the boundary conditions of soil, the vertical vibrations of the saturated soil around the pile and inside pile core are solved by using potential functions and method of separated variables. The vertical vibration of a single pipe in saturated soil is solved and the vertical complex stiffness at pile head is obtained by using the orthogonality of trigonometric functions considering the boundary conditions at pile end. The results of soil 3D wave effect model and simplified model neglecting the radial displacement of soil are compared and analyzed by numerical examples. The influences of the main parameters of pile and soil on the vertical vibration of pipe pile in saturated soil are investigated. The results indicate that the radial displacement shouldn’t be neglected when the pipe pile wall is thin and frequency is low. The liquid phase of the soil shouldn’t be ignored at the peaks and valleys of the curves of dynamic stiffness factor and the equivalent damping varying with frequency. The pipe pile wall should not be too thin. The thickness of pipe pile wall, the ratio of length to diameter, density ratio and shear modulus ratio between the pile core saturated soil and saturated soil around pile, pile-soil modulus ratio have great effect on the vertical vibration of a single pipe pile in saturated soil. The relevant parameters should be considered synthetically in the design of pipe pile.

Key words: 3D wave effect model, saturated soil, pipe pile, vertical vibration, complex stiffness

中图分类号: 

  • TU 473

[1] 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251.
[2] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[3] 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952.
[4] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[5] 孙德安, 薛垚, 汪磊, . 变荷载作用下考虑半透水边界热传导性的 一维饱和土热固结特性研究[J]. 岩土力学, 2020, 41(5): 1465-1473.
[6] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[7] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[8] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[9] 李华, 李同录, 江睿君, 范江文. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学, 2020, 41(3): 895-904.
[10] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[11] 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534.
[12] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[13] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[14] 刘丽, 吴羊, 陈立宏, 刘建坤, . 基于数值模拟的湿润锋前进法测量精度分析[J]. 岩土力学, 2019, 40(S1): 341-349.
[15] 唐晓武, 柳江南, 杨晓秋, 俞悦. 开孔管桩动孔压消散特性的理论研究[J]. 岩土力学, 2019, 40(9): 3335-3343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!