›› 2018, Vol. 39 ›› Issue (7): 2499-2508.doi: 10.16285/j.rsm.2016.2324
王小雯1, 2,张建民1, 2,李焯芬1, 2
WANG Xiao-wen1, 2, ZHANG Jian-min1, 2, LEE C F1, 2
摘要: 针对波浪引起的饱和砂质海床土体和管线相互作用问题,将Biot动力固结理论与笔者课题组提出的砂土液化变形弹塑性本构模型相耦合,较为合理地再现了简谐波浪作用下较浅饱和砂质海床中管线周围可液化海床土体的超静孔隙水压力瞬态累积变化规律与液化过程。数值计算结果与Sumer等的试验规律一致。结果表明:由于管线的存在,改变了饱和砂质海床液化区域的空间分布。液化首先由管线下部土体开始产生,随着波浪荷载的持续作用,液化区域沿着管线外壁向上演化;同时海床表层土体产生液化并向深层发展,最终管线周围土体都发生液化,这是导致空管上浮的主要原因。当饱和砂质海床中存在管线时,管线附近海床土体液化深度明显变深。超静孔压累积和渗透力变化的耦合作用是导致饱和砂质海床土体产生液化的原因。与将海床土体视为饱和弹性多孔介质相比,可考虑液化全过程的弹塑性动力分析能更为合理地揭示实际波浪作用下饱和砂质海床土体的渗流场和应力场的瞬态时空演变规律。
中图分类号:
TU 411
[1] | 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198. |
[2] | 任宇晓, 闫玥, 付登锋. 浅层地基上管道轴向运动的阻力研究[J]. 岩土力学, 2020, 41(4): 1404-1411. |
[3] | 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914. |
[4] | 马维嘉, 陈国兴, 吴琪, . 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542. |
[5] | 熊辉, 杨丰, . 文克尔地基模型下液化土桩基水平振动响应分析[J]. 岩土力学, 2020, 41(1): 103-110. |
[6] | 李兆焱, 袁晓铭, 孙锐. 液化判别临界曲线的变化模式与一般规律[J]. 岩土力学, 2019, 40(9): 3603-3609. |
[7] | 张峰, 陈国兴, 吴琪, 周正龙. 波浪荷载下饱和粉土不排水动力特性试验研究[J]. 岩土力学, 2019, 40(7): 2695-2702. |
[8] | 杨洋, 孙锐, 陈卓识, 袁晓铭. 基于土层常规参数的剪切波速液化概率计算公式[J]. 岩土力学, 2019, 40(7): 2755-2764. |
[9] | 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331. |
[10] | 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455. |
[11] | 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272. |
[12] | 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602. |
[13] | 王 腾, 吴 瑞. 黏土中海底管线竖向贯入阻力研究[J]. 岩土力学, 2019, 40(3): 871-878. |
[14] | 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096. |
[15] | 王宇飞, 刘 润. 砂土中浅埋管道在竖向−水平荷载空间的 承载力包络线研究[J]. 岩土力学, 2019, 40(3): 1129-1139. |
|