›› 2018, Vol. 39 ›› Issue (10): 3812-3820.doi: 10.16285/j.rsm.2017.0257

• 数值分析 • 上一篇    下一篇

临近边坡的条形基础地基极限承载力数值分析

郑 刚1, 2, 3,于晓旋1, 2,杜 娟4, 1,尹 鑫1, 2,周海祚1, 2, 3,杨新煜1, 2   

  1. 1. 天津大学 建筑工程学院,天津 300072;2. 天津大学 滨海土木工程结构与安全教育部重点实验室,天津 300072; 3. 天津大学 水利工程仿真与安全国家重点实验室,天津 300072;4. 海南大学 土木建筑工程学院,海南 海口 570228
  • 收稿日期:2017-02-20 出版日期:2018-10-11 发布日期:2018-11-04
  • 通讯作者: 杜娟,女,1978年生,博士研究生,副教授,主要从事土力学、地基处理等方面的研究与教学工作。E-mail: dujuan2012@hainu.edu.cn E-mail:zhenggang1967@163.com
  • 作者简介:郑刚,男,1967年生,博士,教授,博士生导师,主要从事土力学及岩土工程的教学与科研工作
  • 基金资助:
    国家重点研发计划(No.2017YFC0805407);国家自然科学基金(No. 51708405,No. 41630641);天津市科技计划支撑计划项目(No. 16YDLJSF00040)。

Numerical analysis of ultimate bearing capacity of strip footings near slopes

ZHENG Gang1, 2, 3, YU Xiao-xuan1, 2, DU Juan4, 1, YIN Xin1, 2, ZHOU Hai-zuo1, 2, 3, YANG Xin-yu1, 2   

  1. 1. School of Civil Engineering, Tianjin University, Tianjin 300072, China; 2. Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300072, China; 3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China; 4. College of Civil Engineering and Architecture, Hainan University, Haikou, Hainan 570228, China
  • Received:2017-02-20 Online:2018-10-11 Published:2018-11-04
  • Supported by:
    This work was supported by the National Key R&D Program of China (2017YFC0805407), the National Natural Science Foundation of China (51708405, 41630641) and the Project of Tianjin Science and Technology Plan (16YDLJSF00040).

摘要: 建筑物或构筑物基础临近边坡置放的情况在实际工程中十分普遍,但目前对于临近边坡基础的地基承载力及破坏模式尚缺乏深入研究。采用不连续布局优化(DLO)极限分析法建立数值模型,分析边坡几何尺寸、土体参数和基础位置对临坡条形基础的极限承载力和边坡破坏模式的影响,并对国内外现行规范推荐的计算方法进行评价。结果表明:极限承载力随边坡高度和边坡倾斜角的增大而减小,当坡高超过临界高度后,极限承载力将不受其影响;极限承载力随土体黏聚力和内摩擦角的增大而提高,滑动面随黏聚力的增大而变浅,随内摩擦角的增大而变深;极限承载力随基础与坡肩相对距离的增大而提高,当基础置放位置超过某临界距离后极限承载力不受边坡影响。在土体强度高、坡角较大时,《建筑地基基础设计规范》规定的临坡基础最小置放距离偏于危险,设计时仍需考虑边坡对承载力的减损作用;在土体强度较低、坡角较小时,规范规定值偏于保守。美国AASHTO规范对边坡地基极限承载力的取值在砂土边坡时较为可靠,但其仅适用于坡面破坏模式的情况;饱和黏土边坡的承载力曲线有悖于理论解,对临界距离的规定同样存在低估。

关键词: 临近基坑, 承载力, 破坏模式, 边坡稳定, 安全距离

Abstract: The footing placed on the top of a slope is common in geotechnical engineering practice. However, few studies were performed to study the bearing capacity and the failure mechanism of footing-slope systems. In this study, discontinuity layout optimization (DLO) is adopted to study the effects of geometry of the slope, soil properties and footing location on the limit load and the critical collapse mechanism. Evaluations are provided concerning the recommended estimating methods in present codes both at home and abroad. The results show that the ultimate bearing capacity decreases as the increasing slope height and slope angle, but the effects can be neglected when the slope height exceeds a critical value; the ultimate bearing capacity increases as the increasing soil strength. The failure slip becomes shallower with high soil cohesion, while the failure slip develops deeper with the increase of friction angle. The bearing capacity increases with the normalized footing distance of from the crest of slopes, and there is a critical normalized distance that makes the effect of slopes can be negligible. The specified value for the minimum distance suggested by the China Code for design of building footing is smaller than the critical distance with high soil strength and large slope angles, and the effect of slopes on the bearing capacity should be considered; conversely, the recommended designed distance tends to be conservative for low soil strength and small slope angles. In AASHTO code, the ultimate bearing capacity values for cohesiveless soil are reliable, but only face failure mode is considered; the recommended design chart is contrary to theoretical solution in cohesive soil. The normalized footing distance from the crest of slopes is underestimated in AASHTO code.

Key words: near excavation, bearing capacity, failure modes, slope stability, safe distance

中图分类号: 

  • TU 476

[1] 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236.
[2] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[3] 周强, 黎康平, 段亚辉, 曹子君, 李典庆, . 基于广义可靠指标相对安全率的地基承载力 安全判据研究[J]. 岩土力学, 2020, 41(6): 2052-2062.
[4] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
[5] 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812.
[6] 杨学祥, 焦园发, 杨语驿, . 充气膨胀控制锚杆的研制与试验[J]. 岩土力学, 2020, 41(3): 869-876.
[7] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[8] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[9] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[10] 孙锐, 杨峰, 阳军生, 赵乙丁, 郑响凑, 罗静静, 姚捷, . 基于二阶锥规划与高阶单元的 自适应上限有限元研究[J]. 岩土力学, 2020, 41(2): 687-694.
[11] 王培涛, 黄正均, 任奋华, 章亮, 蔡美峰, . 基于3D打印的含复杂节理岩石直剪特性 及破坏机制研究[J]. 岩土力学, 2020, 41(1): 46-56.
[12] 戴国亮, 朱文波, 郭晶, 龚维明, 赵学亮, . 软黏土中吸力式沉箱基础竖向抗拔承载 特性试验研究[J]. 岩土力学, 2019, 40(S1): 119-126.
[13] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[14] 王钦科, 马建林, 陈文龙, 杨彦鑫, 胡中波, . 上覆土嵌岩扩底桩抗拔承载特性离心 模型试验及计算方法研究[J]. 岩土力学, 2019, 40(9): 3405-3415.
[15] 张雷, 王宁伟, 景立平, 方晨, 董瑞, . 电渗排水固结中电极材料的对比试验[J]. 岩土力学, 2019, 40(9): 3493-3501.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!