›› 2017, Vol. 38 ›› Issue (6): 1832-1840.doi: 10.16285/j.rsm.2017.06.035

• 测试技术 • 上一篇    下一篇

新型土工单轴拉伸试验装置的研制及应用

崔 猛1, 2, 3,韩尚宇4,洪宝宁5   

  1. 1. 南昌工程学院 土木与建筑工程学院,江西 南昌 330099;2. 江西省水利土木特种加固与安全监控工程研究中心;3. 江西省水利土木工程基础设施安全重点实验室;4. 南昌航空大学 土木建筑学院, 江西 南昌 330063;5. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098)
  • 收稿日期:2015-10-06 出版日期:2017-06-12 发布日期:2018-06-05
  • 作者简介:崔猛,男,1986年生,博士,讲师,主要从事土体拉伸特性和土体微细观结构方面的研究
  • 基金资助:

    国家自然科学基金项目(No.51609114);江西省青年科学基金项目(No.20114BAB216010);河海大学岩土力学与堤坝工程教育部重点实验室开放基金项目(No.2016001)。

Development and application of a new geotechnical device for direct tension test

CUI Meng1, 2, 3, HAN Shang-yu4, HONG Bao-ning5   

  1. 1. College of Civil and Structure Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China; 2. Jiangxi Provincial Engineering Research Center of the Special Reinforcement and Safety Monitoring Technology in Hydraulic & Civil Engineering; 3. Jiangxi Province Key Laboratory of Hydraulic & Civil Engineering Infrastructure Security; 4. College of Engineering and Architecture, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China; 5. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2015-10-06 Online:2017-06-12 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51609114), Jiangxi Province Science Foundation for Youths (20114BAB 216010), and Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University (2016001).

摘要: 针对目前土工单轴拉伸试验水平的不足,研制了一套新型土工单轴拉伸试验装置,该套装置主要由试样制备、加载、控制与数据采集4个部分组成。试验装置通过燕尾槽与双滑动底板的设计,可以制备不同拉伸段长度的试样并分别开展相 应的单轴拉伸试验;通过试样形式与所对应拉伸夹具的设计,解决了试样端部在拉伸过程中出现的松弛与应力集中问题;通过双导轨拉伸装置的设计,避免了试样在拉伸过程中出现的应力偏心现象;通过双级变速箱的设计使最小拉伸速率可达到0.001 mm/min,能够准确描述材料单轴拉伸破坏的演化过程,并能准确测试材料的抗拉强度以及全过程的拉应力-位移关系曲线。基于所研制的试验装置开展了黏性土的单轴拉伸试验,试验结果表明:黏性土的单轴拉伸破坏形式不是纯脆性破坏,而是在抗拉强度后存在一个软化阶段,此时仍具有一定的承载能力;随着试样拉伸段长度的增大,抗拉强度呈对数减小,峰值位移呈对数增大;随着拉伸速率的增加,抗拉强度呈对数增加,峰值位移呈线性增加;抗拉强度与峰值位移均随压实度的递增呈线性增加;随着含水率的递增,试样的抗拉强度先增大后减小,即存在一个峰值,而峰值位移呈线性增加。

关键词: 单轴拉伸, 试验装置, 拉伸段长度, 破坏形式, 抗拉强度, 峰值位移

Abstract: Since the current device for geotechnical direct tension tests is limited, a new direct tension device was developed in this study. The testing device consists of four components: sample preparation, loading, control and data acquisition system. With the novel design of “dovetail” groove and a double sliding plate on the device, direct tension tests can be conducted on prepared samples with different lengths. Due to the chosen sampling forms and their corresponding stretching fixture, the problems of relaxation and stress concentration on the ends of the specimen can be solved during the drawing process. The phenomenon of eccentric stress appearing in the drawing process can be avoided using the double rail stretching device. The minimum tensile rate of the device is 0.001 mm/min assisted by the two-stage gearbox design. Therefore, the device can be used to describe the evolution of uniaxial tensile failure and to determine tensile strength and tensile stress-displacement curve in the whole process. Direct tension tests were carried out on clay specimens using the developed device. The results show that the uniaxial tensile failure mode of clay is not purely brittle fracture, but there exists a softening stage after the tensile strength, and at this moment, clay specimens still have the certain bearing capacity. With the increase of the length of stretching section, the tensile strength decreases logarithmically while the peak displacement increases logarithmically. With the increase of tensile rate, tensile strength increases logarithmically while the peak displacement increases linearly. Both tensile strength and the peak displacement increase linearly with increasing compactness. With the growth of moisture content, tensile strength increases initially and decreases afterward, but the peak displacement linearly increases.

Key words: direct tension, test device, stretching section length, failure mode, tensile strength, peak displacement

中图分类号: 

  • TU 411.3

[1] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[2] 张茂础, 盛谦, 崔臻, 马亚丽娜, 周光新. 岩石材料抗拉强度与劈裂节理面形貌的 加载速率效应研究[J]. 岩土力学, 2020, 41(4): 1169-1178.
[3] 陈虎, 叶义成, 王其虎, 胡南燕, 刘冉, 江慧敏. 基于岩梁−块体理论的巷道软弱层直接顶板 破坏形式研究[J]. 岩土力学, 2020, 41(4): 1447-1454.
[4] 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812.
[5] 樊科伟, 刘斯宏, 廖洁, 方斌昕, 王建磊, . 袋装石土工袋剪切力学特性试验研究[J]. 岩土力学, 2020, 41(2): 477-484.
[6] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[7] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[8] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[9] 高桂云,王成虎,王春权,. 双圆环直接拉伸试验试样最优尺寸范围研究[J]. , 2018, 39(S1): 191-202.
[10] 黄 伟,项 伟,王菁莪,程超杰,崔德山,刘清秉,. 基于变形数字图像处理的土体拉伸试验装置的研发与应用[J]. , 2018, 39(9): 3486-3494.
[11] 刘跃东,林 健,冯彦军,司林坡,. 基于水压致裂法的岩石抗拉强度研究[J]. , 2018, 39(5): 1781-1788.
[12] 滕尚永, 杨圣奇, 黄彦华, 田文岭, . 裂隙充填影响巴西圆盘抗拉力学特性试验研究[J]. 岩土力学, 2018, 39(12): 4493-4507.
[13] 吴秋红,赵伏军,李夕兵,王世鸣,王 斌,周志华,. 径向压缩下圆环砂岩样的力学特性研究[J]. , 2018, 39(11): 3969-3975.
[14] 腾俊洋,张宇宁,唐建新,张 闯,李臣林, . 锚固方式对节理岩体剪切性能影响试验研究[J]. , 2017, 38(8): 2279-2285.
[15] 腾俊洋 ,张宇宁,唐建新,张 闯,李臣林, . 单轴压缩下含层理加锚岩石力学特性研究[J]. , 2017, 38(7): 1974-1982.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!