›› 2017, Vol. 38 ›› Issue (7): 2043-2048.doi: 10.16285/j.rsm.2017.07.026

• 基础理论与实验研究 • 上一篇    下一篇

黑方台地区黄土强度弱化的浸水时效特征与机制分析

李 姝1, 2,许 强1,张立展1,彭大雷1,吕红宾3,宋少杰4   

  1. 1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;2. 北京市勘察设计研究院有限公司,北京 100038;3. 中国地质大学 水资源与环境学院,北京 100083;4. 成都理工大学 材料与化学化工学院,四川 成都 610059
  • 收稿日期:2015-09-02 出版日期:2017-07-10 发布日期:2018-06-05
  • 通讯作者: 许强,男,1968年生,博士,教授,博士生导师,主要从事地质灾害监测预警与防治工程方面的教学与科研工作。E-mail: xuqiang_68@126.com E-mail:leajan@qq.com
  • 作者简介:李姝,女,1991年生,硕士研究生,主要从事地质灾害评价与预测方面的研究工作。
  • 基金资助:

    国家创新研究群体科学基金项目(No. 41521002);国家重点基础研究发展计划项目(No. 2014CB744703)。

Time effect and mechanism of strength weakening of loess soaked in water in Heifangtai area

LI Shu1,2, XU Qiang1, ZHANG Li-zhan1, PENG Da-lei1, LÜ Hong-bin3, SONG Shao-jie4   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. Beijing Engineering Consultants Ltd., Beijing 100038, China; 3. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; 4. Department of Material Science & Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2015-09-02 Online:2017-07-10 Published:2018-06-05
  • Supported by:

    This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (41521002) and the National Program on Key Basic Research Project of China (2014CB744703).

摘要: 黑方台地区因灌溉水下渗,导致地下水位上升,深部土体长期处于饱水状态。地下水溶滤作用带走大量盐分,同时改变了孔隙水溶液中的化学成分,影响着黄土的抗剪强度。采用环剪仪、激光粒度分析仪、Zeta电位仪、电感耦合等离子体发射光谱仪、离子色谱仪等装置从强度和物理化学作用等方面对其进行研究。试验结果显示,黄土抗剪强度及其参数(内摩擦角)-浸水时间曲线呈“勺形”。结合相应的物理化学测试结果,分析了黄土强度弱化的浸水时效机制:浸水初期,胶结物(易溶盐)迅速溶解,黄土微结构破坏,内摩擦角显著降低;同时孔隙水离子浓度增大,与黏粒反离子层发生离子交换作用,黏粒结合水膜厚度变小,致使内摩擦角稍有增大;随着浸水时间的增加,中溶盐石膏逐渐溶解于氯化钠溶液中,导致黄土中粗颗粒进一步分散解体,黏粒含量增加,双电层总厚度有所增大,内摩擦角稍有降低。

关键词: 饱和黄土, 强度, 时效性, 机制分析

Abstract: The infiltration of irrigation water on Heifangtai loess plateau raises the groundwater level and saturates the deep soil all the time. Lixiviation caused by underground water takes away much salt and changes chemical components in pore water at the same time, which affects the strength of loess. In this study, the shear strength and physicochemical characteristics of loess are investigated using ring shear apparatus, laser particle size (LPS) analyzer, Zeta probe (potential measuring apparatus), inductively coupled plasma emission spectrometer (ICP-OES), ion chromatograph. The test results show that the curve of strength (internal friction angle)-soaking time is in a “spoon” shape. Based on the results of physical and chemical tests, mechanism of strength weakening of loess soaked in water is discussed. The cements (soluble salt) among loess particles dissolve in water rapidly, breaking the microstructure and making the internal friction angle decrease. At the same time, ion concentration in the pore water increases, and the ions exchanged with outer layer of clay particles, leading to a decrease in the thickness of adsorbed water of clay particle so as to make the internal friction angle increase slightly. With the increase of soaking time, gypsum dissolves in sodium chloride solution and coarse particles are dispersed into clay particles further, then the total thickness of electrical double layer increases, so the internal friction angle decreases slightly.

Key words: saturated loess, strength, time effect, mechanism analysis

中图分类号: 

  • TU 42

[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[3] 刘杰, 杨玉婳, 姚海林, 卢正, 岳婵, . 基于不同改性方法的分散性黏土处治试验研究[J]. 岩土力学, 2020, 41(S1): 163-170.
[4] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[5] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[6] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[7] 袁庆盟, 孔亮, 赵亚鹏, . 考虑水合物填充和胶结效应的深海能源土 弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 2304-2312.
[8] 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388.
[9] 吴再海, 纪洪广, 姜海强, 齐兆军, 寇云鹏, . 尾砂胶结含盐冻结充填体力学特性研究[J]. 岩土力学, 2020, 41(6): 1874-1880.
[10] 瑜璐, 杨庆, 杨钢, 张金利. 塑性极限分析鱼雷锚锚尖贯入阻力[J]. 岩土力学, 2020, 41(6): 1953-1962.
[11] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[12] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[13] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 碱溶液预降解淤泥有机质的效果与机制讨论[J]. 岩土力学, 2020, 41(5): 1567-1572.
[14] 张茂础, 盛谦, 崔臻, 马亚丽娜, 周光新. 岩石材料抗拉强度与劈裂节理面形貌的 加载速率效应研究[J]. 岩土力学, 2020, 41(4): 1169-1178.
[15] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!