岩土力学 ›› 2018, Vol. 39 ›› Issue (12): 4468-4474.doi: 10.16285/j.rsm.2017.0915

• 基础理论与实验研究 • 上一篇    下一篇

单轴加载过程中砂岩声学特性研究

胡明明1,2,3,周 辉1,2,张勇慧1,2,张传庆1,2,高 阳1,2,胡大伟1,2,卢景景1,2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 合肥学院 建筑工程系,安徽 合肥 230601
  • 收稿日期:2017-05-10 出版日期:2018-12-11 发布日期:2018-12-31
  • 通讯作者: 周辉,男,1972年生,博士,研究员,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究工作。 E-mail: hzhou@whrsm.ac.cn E-mail:mingcumt@163.com
  • 作者简介:胡明明,男,1986年生,博士研究生,主要从事岩石力学试验方面的研究工作。
  • 基金资助:
    国家重点基础研究发展计划项目(973计划)(No.2014CB046902);中国科学院知识创新工程重要方向项目(No.KZCX2-EW-QN115);国家自然科学基金项目(No.51427803,No.51404240);安徽省重点研究与开发计划(No.1804a0802206)。

Analysis of acoustic property of sandstone under uniaxial loading

HU Ming-ming1,2,3, ZHOU Hui1,2, ZHANG Yong-hui1,2, ZHANG Chuan-qing1,2, GAO Yang1,2, HU Da-wei1,2, LU Jing-jing1,2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Department of Civil Engineering, Hefei University, Hefei, Anhui 230601, China
  • Received:2017-05-10 Online:2018-12-11 Published:2018-12-31
  • Supported by:
    This work was supported by the National Program on Key Basic Research Project of China (973 Program)(2014CB046902), the Innovative Program of the Chinese Academy of Sciences (KZCX2-EW-QN115), the National Natural Science Foundation of China (NSFC) (51427803, 51404240) and the Key Research and Development Projects of Anhui Province(1804a0802206).

摘要: 岩体的声学特性与应力状态和破坏程度密切相关,通过岩体声学特性的变化来分析岩体应力状态进而评价工程稳定性是一种行之有效的工程措施。针对砂岩开展了单轴压缩试验,并在加载过程中同步进行3个方向的声波测试,获得了砂岩加载过程中3个不同方向声波波速与应力的演化规律。试验结果表明:随着应力的增加,轴向波速逐渐增大,横向波速表现出先增后减的趋势。考虑到不同方向声波测试结果的差异性,采用含不同倾角裂隙的石膏试样进行声波试验。结果表明,当裂隙方向与声波传播方向一致时,波速最大,与声波传播方向垂直时,波速最小;此外,为分析岩样波速与应力状态的相关性,建立了波速与体应变的关系,结果表明,随着体应变的增加,平均波速逐渐增大,在体应变达到最大值附近时,平均波速达到最大值,在体应变下降阶段,波速开始下降;根据轴向波速与应力的变化规律,得到了应力与波速的指数函数拟合公式,据此可以通过现场测试获得的波速预测现场岩体的应力范围,进而评价工程岩体稳定性。

关键词: 超声波, 波速, 单轴加载, 裂隙倾角, 体应变, 损伤

Abstract: The acoustic characteristics of rock mass are closely related to the stress state and the degree of damage of rock mass. It is an effective engineering measure to analyze the stress state and evaluate the stability of rock mass through the change of acoustic properties of rock mass. The axial and transverse ultrasonic synchronous tests during the uniaxial loading tests of sandstone were carried out and the evolution laws of wave velocity with stress in different directions during loading were obtained. Experimental results showed that the wave velocity in axial direction increased with the increase of stress, while the wave velocity increased first and then decreased in transversal direction. Since the acoustic test results were different in different directions, the influence of fracture direction on ultrasonic velocity was verified by the acoustic test of gypsum specimens with pre-existing cracks with different inclinations. The wave velocity achieved the maximum value when the fissure direction was consistent with the direction of sound wave propagation, and the wave velocity was minimum when the fissure direction was perpendicular to the propagation direction. In addition, in order to analyze the correlation between the wave velocity and stress state, the relationship between wave velocity and volumetric strain was established. The results showed that the average velocity gradually increased with the increase of volumetric strain, and reached the maximum value at the peak of volumetric strain, and then began to decrease with the decline of volumetric strain. According to the relationship between stress and wave velocity during the loading process, an exponential fitting formula of stress and wave velocity was obtained. As a result, the wave velocity obtained by field test could be used to predict the stress range of the surrounding rock and evaluate the stability of the rock mass.

Key words: ultrasonic wave, wave velocity, uniaxial loading, crack inclination, volumetric strain, damage

中图分类号: 

  • TU451
[1] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[2] 叶阳, 曾亚武, 杜欣, 孙翰卿, 陈曦, . 球形砾石碰撞损伤破碎三维离散元模拟研究[J]. 岩土力学, 2020, 41(S1): 368-378.
[3] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[4] 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624.
[5] 杨艳霜, 周辉, 梅松华, 张占荣, 李金兰. 高地应力硬脆性围岩开挖损伤区时效性扩展案例分析——特征与机制[J]. 岩土力学, 2020, 41(4): 1357-1365.
[6] 王青元, 刘杰, 王培涛, 刘飞, . 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(3): 781-788.
[7] 侯会明, 胡大伟, 周辉, 卢景景, 吕涛, 张帆. 考虑开挖损伤的高放废物地质处置库温度-渗流-应力耦合数值模拟方法[J]. 岩土力学, 2020, 41(3): 1056-1064.
[8] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[9] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[10] 梁珂, 陈国兴, 刘抗, 王彦臻, . 饱和珊瑚砂最大动剪切模量的 循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41(2): 601-611.
[11] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[12] 周凤玺, 柳鸿博, 蔡袁强, . 饱和多孔热弹性介质中Rayleigh波 传播特性分析[J]. 岩土力学, 2020, 41(1): 315-324.
[13] 周家作, 韦昌富, 魏厚振, 杨周洁, 李力昕, 李彦龙, 丁根荣, . 多功能水合物沉积物三轴试验系统的研制与应用[J]. 岩土力学, 2020, 41(1): 342-352.
[14] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[15] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!