岩土力学 ›› 2020, Vol. 41 ›› Issue (3): 1056-1064.doi: 10.16285/j.rsm.2019.0450

• 数值分析 • 上一篇    下一篇

考虑开挖损伤的高放废物地质处置库温度-渗流-应力耦合数值模拟方法

侯会明1, 2,胡大伟1, 2,周辉1, 2,卢景景1, 2,吕涛3,张帆4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学和工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学 北京 100049; 3. 中国核电工程有限公司 北京 100840;4. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430064
  • 收稿日期:2019-03-04 修回日期:2019-08-01 出版日期:2020-03-11 发布日期:2020-05-26
  • 通讯作者: 胡大伟,男,1981年生,博士,研究员,主要从事地下工程多场耦合方面的研究工作。E-mail:dwhu@whrsm.ac.cn E-mail:352221108@qq.com
  • 作者简介:侯会明,男,1989年生,博士研究生,主要从事地下工程多场耦合方面的研究工作。
  • 基金资助:
    国家重点研发计划资助(No.2018YFC0809601);国家自然科学基金资助项目(No.51779252);湖北省技术创新专项(重大项目)(No.2017AAA128)。

Thermo-hydro-mechanical coupling numerical simulation method for high-level waste geological repository considering excavation damage

HOU Hui-ming1, 2, HU Da-wei1, 2, ZHOU Hui1, 2, LU Jing-jing1, 2, LÜ Tao3, ZHANG Fan4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. China Nuclear Power Engineering Co., Ltd., Beijing 100840, China; 4. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430064, China
  • Received:2019-03-04 Revised:2019-08-01 Online:2020-03-11 Published:2020-05-26
  • Supported by:
    This work was supported by the National Key R&D Program of China(2018YFC0809600), the National Natural Science Foundation of China(51779252) and the Major Projects of Technical Innovation in Hubei (2017AAA128).

摘要: 高放废物地质处置库处于温度?渗流?应力(THM)多场耦合环境中,对高放废物处置库进行安全评估时,需进行多场耦合分析。然而,高放废物处置库开挖引起硐壁附近围岩应力重分布,产生损伤,导致围岩热学参数(T)、渗流参数(H)和力学参数(M)发生变化,且在空间上分布不均匀,这将会对运营期处置库THM耦合演化过程产生显著影响。通过分析高放废物处置库温度?渗流?应力三场的耦合原理和处置库围岩损伤的分布和演化规律,定义了损伤变量和损伤演化准则,并将损伤变量与热学参数、渗流参数、力学参数以及多场耦合参数(Biot系数、Biot模量和温度排水系数)建立联系,将围岩损伤与温度?渗流?应力建立联系,形成了一个弹塑性损伤温度?渗流?应力多场耦合数值模型,然后利用建立的模型对瑞士Mont Terri高放废物地质处置库围岩加热试验进行模拟,对比了模拟值和试验值,比较了考虑开挖损伤和不考虑开挖损伤对高放废物地质处置库温度?渗流?应力的影响,并分析了在多场耦合作用下开挖损伤的演化规律。

关键词: 高放废物, 屏障系统, 多场耦合, 弹塑性, 开挖损伤

Abstract: The high-level waste geological repository is in a multi-field coupling environment of thermo-hydro-mechanics (THM), and multi-field coupling analysis is required when performing safety assessment on the high-level waste repository. However, the excavation of the high-level waste repository caused the stress redistribution of the surrounding rock near the wall, consequently generated damage and resulted in changes in the thermal parameters (T), seepage parameters (H) and mechanical parameters (M) of the surrounding rock, and their spatial distributions are not homogeneous, which will have a significant impact on the THM coupling evolution process during the operational period. By analyzing the coupling mechanism of thermo-hydro-mechanics of high-level waste repository, and the distribution and evolution law of surrounding rock damage in repository, the damage variable and damage evolution criterion are defined. The damage variable is related to thermal parameters, seepage parameters, mechanical parameters and multi-field coupling parameters (Biot coefficient, Biot modulus and temperature drainage coefficient) and then the damage of surrounding rock is linked with thermo-hydro-mechanical fields. An elastoplastic damage thermo-hydro-mechanical multi-field coupling numerical model is established. Then, the established model is used to simulate the surrounding rock heating test of the high-level waste geological repository in Mont Terri, Switzerland. The numerical and experimental values are compared, the effect of excavation-induced damage on evolution of temperature field, seepage field and stress field are discussed, and the evolution law of excavation-induced damage under multi-field coupling is also analyzed.

Key words: high-level radioactive waste, barrier system, multiphysics coupling problem, elastoplastic, excavation damage

中图分类号: 

  • O424
[1] 李博, 崔逍峰, 莫洋洋, 邹良超, 伍法权, . 法向应力作用下砂岩错位裂隙变形行为研究[J]. 岩土力学, 2021, 42(7): 1850-1860.
[2] 王英, 张虎元, 童艳梅, 周光平, . 接缝密封材料对缓冲砌块屏障封闭性能的影响[J]. 岩土力学, 2021, 42(6): 1648-1658.
[3] 梁文鹏, 周家作, 陈盼, 韦昌富, . 基于均匀化理论的含水合物土弹塑性本构模型[J]. 岩土力学, 2021, 42(2): 481-490.
[4] 张虎元, 赵秉正, 童艳梅, . 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-8.
[5] 陈有亮, 刘耕云, 杜曦, RAFIG Azzam, 吴东鹏, . 考虑膨胀应力和剪胀的深埋隧道弹塑性解[J]. 岩土力学, 2020, 41(8): 2525-2535.
[6] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[7] 杨艳霜, 周辉, 梅松华, 张占荣, 李金兰. 高地应力硬脆性围岩开挖损伤区时效性扩展案例分析——特征与机制[J]. 岩土力学, 2020, 41(4): 1357-1365.
[8] 吴祁新, 杨仲轩. 基于应变响应包络的颗粒材料增量力学行为研究[J]. 岩土力学, 2020, 41(3): 915-922.
[9] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[10] 柯锦福, 王水林, 郑宏, 杨永涛, . 基于修正对称和反对称分解的 三维数值流形元法应用推广[J]. 岩土力学, 2020, 41(2): 695-706.
[11] 邓涛, 林聪煜, 柳志鹏, 黄明, 陈文菁, . 大位移条件下水平受荷单桩的简明弹塑性计算方法[J]. 岩土力学, 2020, 41(1): 95-102.
[12] 侯会明, 胡大伟, 周辉, 卢景景, 吕涛, 张帆, . 考虑细观等效热学参数的高放废物处置库围岩应力−渗流−温度耦合模拟方法[J]. 岩土力学, 2019, 40(9): 3625-3634.
[13] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[14] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[15] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 陈运平,王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. , 2010, 31(4): 1030 -1034 .
[3] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950 -1955 .
[4] 贾 强,张 鑫. 板式基础托换法开发地下空间施工过程的数值分析[J]. , 2010, 31(6): 1989 -1994 .
[5] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[6] 高树生,钱根宝,王 彬,杨作明,刘华勋. 新疆火山岩双重介质气藏供排气机理数值模拟研究[J]. , 2011, 32(1): 276 -280 .
[7] 李雄威,孔令伟,郭爱国. 气候影响下膨胀土工程性质的原位响应特征试验研究[J]. , 2009, 30(7): 2069 -2074 .
[8] 孙德安,孟德林,孙文静,刘月妙. 两种膨润土的土-水特征曲线[J]. , 2011, 32(4): 973 -0978 .
[9] 鲁 涛,王孔伟,李建林. 库水压力作用下砂岩破坏形式的探究[J]. , 2011, 32(S1): 413 -0418 .
[10] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .