岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2525-2535.doi: 10.16285/j.rsm.2019.1799

• 基础理论与实验研究 • 上一篇    下一篇

考虑膨胀应力和剪胀的深埋隧道弹塑性解

陈有亮1, 2,刘耕云1,杜曦1, 3,RAFIG Azzam2,吴东鹏1, 4   

  1. 1. 上海理工大学 环境与建筑学院 土木工程系,上海 200093;2. 亚琛工业大学 工程地质与水文地质系,德国 亚琛 52064; 3. 新南威尔士大学 土木与环境工程学院,澳大利亚 悉尼 2052;4. 上海申通地铁集团有限公司,上海 201804
  • 收稿日期:2019-10-21 修回日期:2020-03-14 出版日期:2020-08-14 发布日期:2020-10-17
  • 作者简介:陈有亮,男,1966年生,博士,教授,博士生导师,主要从事隧道与地下工程、能源与环境岩土工程等方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 10872133);上海市软科学研究领域重点项目(No. 18692106100)。

Elastoplastic solution for a deep-buried tunnel considering swelling stress and dilatancy

CHEN You-liang1, 2, LIU Geng-yun1, DU Xi1, 3, RAFIG Azzam2, WU Dong-peng1, 4   

  1. 1. Department of Civil Engineering, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen 52064, Germany; 3. School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, Australia; 4. Shanghai Shentong Metro Group Co., Ltd., Shanghai 201804, China
  • Received:2019-10-21 Revised:2020-03-14 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (10872133) and the Key Projects in Soft Science Research in Shanghai (18692106100).

摘要: 基于湿度应力场理论,推导了考虑膨胀应力和剪胀特性的圆形隧道开挖后围岩力学响应的弹塑性解。将隧道软弱围岩遇水膨胀现象视为湿度-应力耦合过程,基于Fick第二定律,推导了圆形隧洞围岩内湿度扩散非稳态解。采用非关联流动法则,获得了隧道高膨胀势区的应力和位移解答。以两种不同质量岩体开挖的隧洞为例,分析了膨胀围岩应力和变形的影响因素。结果表明,考虑膨胀应力(取决于围岩含水率变化和湿度膨胀系数)时,塑性区扩大,松动圈厚度增加,应力收敛变慢。当膨胀应力增大到一定程度时,塑性区将出现拉应力区。膨胀岩隧洞开挖遇水作用,膨胀应力增加的围岩变形远大于地应力引起的围岩变形。同时,应力剪胀对膨胀性围岩的变形影响不容忽视,尤其是在支护抗力较小的情况下,洞壁处径向位移增加显著。

关键词: 深埋隧道, 湿度应力场, 膨胀应力, 剪胀, 弹塑性解

Abstract: This study focuses on tunneling under challenging conditions, particularly with regard to the stress distribution and deformation in the humidity stress field. The swelling phenomenon during tunneling has been treated as a coupled humidity–mechanics process, where the humidity diffusion and stress dilatancy are considered together to obtain stress and deformation fields for tunnels crossing the formations with high swelling potential. A solution to the nonstationary process of humidity transfer has been derived according to Fick’s second law. The swelling pressure has been included in the form of body force, and a non-associated flow rule has been adopted to obtain the analytical solutions. Next, considering the examples of rock tunnels that are excavated in two different quality rock mass, we have investigated the impact factors on stress and deformation in swelling surrounding rock. Numerical results show that the inclusion of the swelling stress increases the plastic zone of the surrounding rock and the maximum stress at the elastic-plastic boundary, whereas the stress convergence has been decreased. After a certain increase in swelling pressure, a tensile stress zone appears in the plastic circle. The deformation of surrounding rock caused by swelling pressure can be much more significant than that caused by in-situ stress. Furthermore, the effect of dilatancy on the deformation rock cannot be negligible especially when the support resistance is small. This paper presents a new possible workflow to quickly evaluate the elastic-plastic stress and deformation of tunnels in swelling surrounding rock.

Key words: deep-buried tunnel, humidity stress field, swelling stress, dilatancy, elastoplastic solution

中图分类号: 

  • TU 431
[1] 王力, 李高, 陈勇, 谭建民, 王世梅, 郭飞, . 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854.
[2] 袁庆盟, 孔亮, 赵亚鹏, . 考虑水合物填充和胶结效应的深海能源土 弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 2304-2312.
[3] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[4] 刘杰, 李运舟, 杨渝南, 李洪亚, 孙涛, 李政, . 自膨胀锚杆锚固体膨胀剂极限掺量确定方法研究[J]. 岩土力学, 2020, 41(10): 3266-3278.
[5] 金磊磊, 魏玉峰, 黄鑫, 魏婕. 基于节理面三维形貌的岩石节理抗剪强度 计算模型[J]. 岩土力学, 2020, 41(10): 3355-3364.
[6] 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202.
[7] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[8] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[9] 李建朋, 高岭, 母焕胜. 高应力卸荷条件下砂岩扩容特征及其剪胀角函数[J]. 岩土力学, 2019, 40(6): 2119-2126.
[10] 何子露, 刘威, 何思明, 闫帅星, . 饱和松散堆积体快速滑动的剪胀效应 机制与过程模拟[J]. 岩土力学, 2019, 40(6): 2389-2396.
[11] 王凤云, 钱德玲, . 基于统一强度理论深埋圆形隧道围岩的剪胀分析[J]. 岩土力学, 2019, 40(5): 1966-1976.
[12] 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
[13] 陆 勇, 周国庆, 杨冬英, 宋家庆, . 砂土剪胀软化、剪缩硬化统一本构的显式计算[J]. 岩土力学, 2019, 40(3): 978-986.
[14] 董建勋, 刘海笑, 李 洲. 适用于砂土循环加载分析的边界面塑性模型[J]. 岩土力学, 2019, 40(2): 684-692.
[15] 郭万里, 蔡正银, 武颖利, 黄英豪. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703-4710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 胡 伟,黄 义,刘增荣. 循环荷载下饱和黄土不排水强度退化规律试验与理论研究[J]. , 2009, 30(10): 2996 -3000 .
[5] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[6] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[7] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[8] 吴世余,余金煌. 不透水地基上堤坝上游坡的附加渗径[J]. , 2009, 30(10): 3151 -3153 .
[9] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[10] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .