岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1966-1976.doi: 10.16285/j.rsm.2017.2537

• 岩土工程研究 • 上一篇    下一篇

基于统一强度理论深埋圆形隧道围岩的剪胀分析

王凤云1, 2,钱德玲1   

  1. 1. 合肥工业大学 土木与水利工程学院,安徽 合肥 230009;2. 安徽建筑大学 土木工程学院,安徽 合肥 230022
  • 收稿日期:2017-12-21 出版日期:2019-05-11 发布日期:2019-06-02
  • 作者简介:王凤云,女,1989年生,博士,讲师,主要从事隧道工程数值计算和理论分析等研究工作。
  • 基金资助:
    国家自然基金资助项目(No. 51378168)。

Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory

WANG Feng-yun1, 2, QIAN De-ling1   

  1. 1. Scool of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; 2. School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230022, China
  • Received:2017-12-21 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Nature Science Foundation of China (51378168).

摘要: 基于连续介质理论中岩体的剪胀角与围压和塑性剪切应变密切相关,隧洞周边岩体的应力状态因开挖卸荷而发生应力重分布,迫使其围压由原地应力逐渐衰减,塑性剪切应变不断增加,引起剪胀效应呈非线性变化。首先,基于统一强度理论和非关联流动法则,将潜在塑性区围岩按等围压释放划分为若干同心圆,提出了考虑中间主应力和非线性剪胀性的有限差分法,计算应变软化围岩的力学问题,并以实例验证其正确性。其次,通过参数分析,研究塑性区内岩体的剪胀角受中间主应力、临界软化系数和支护力的影响规律。研究结果表明,中间主应力主要影响剪胀角的峰值,随着中间主应力效应增加,剪胀峰值增加;临界软化系数主要影响剪胀角的变化率,随着临界软化系数的增加,剪胀角变化缓慢;中间主应力和临界软化系数共同影响塑性区剪胀角的变化;随着支护力的增加,洞壁处的剪胀角增加;双剪强度理论计算的位移值较小,应谨慎采用,同时采用Mohr-Coulomb强度准则时可以适当考虑围岩的承载潜力。

关键词: 隧道, 统一强度理论, 中间主应力, 应变软化, 非线性剪胀

Abstract: Based on the continuum theory, the dilatancy angle is related to the confining stress and plastic shear strain. Due to the tunnel excavation, the confining stress of rock mass decreases from the initial stress to the support force, while the plastic shear strain increases. Thus the dilatancy coefficient varies nonlinear. In this study, based on the unified strength failure criterion and non-associated flow rule, the potential plastic zone was divided into a finite number of concentric rings according to the equal decreased confining stress. A finite difference method was proposed by considering the effects of the intermediate principal stress and nonlinear dilatancy. Then the accuracy of this method was further verified using example analysis. The parameter analysis was conducted to study the effects of the intermediate principal stress, the critical softening parameter and the support load on the dilatancy angle in the plastic zone of rock mass. It was found that the peak dilatancy increased with the increase of the intermediate principal stress. The variation rate of dilatancy angle became slowly with the increase of the critical softening parameter. The intermediate principal stress and the critical softening parameter showed corporate effects on the variation of dilatancy angle in the plastic zone. The dilatancy angle at the tunnel wall increased with the increase of the support load. The double shear strength criterion should be used cautiously in the tunnel because the calculated displacement at the tunnel wall is small. Additionally, when the Mohr-Coulomb strength criterion is used, it is proper to consider the bearing potential of rock mass.

Key words: tunnels, unified strength theory, intermediate stress, strain-softening behavior, nonlinear dilatancy

中图分类号: 

  • TU 452
[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[3] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[4] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[5] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[6] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[7] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[8] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[9] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[10] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[11] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[12] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[13] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[14] 郑立夫, 高永涛, 周喻, 田书广. 基于流固耦合理论水下隧道冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(3): 1029-1038.
[15] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!