岩土力学 ›› 2020, Vol. 41 ›› Issue (1): 67-77.doi: 10.16285/j.rsm.2018.2279

• 基础理论与实验研究 • 上一篇    下一篇

高静水压力压实作用下疏松砂岩渗透 特性演化及其机制

杨福见1, 2,胡大伟1, 2,田振保3,周辉1, 2,卢景景1, 2,罗宇杰1, 2,桂树强4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学和工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310014;4. 长江勘测规划设计研究院,湖北 武汉 430010
  • 收稿日期:2018-12-17 修回日期:2019-04-30 出版日期:2020-01-13 发布日期:2020-01-05
  • 通讯作者: 胡大伟,男,1981年生,博士,研究员,主要从事地下工程多场耦合方面的研究工作。E-mail: dwhu@whrsm.ac.cn E-mail:fjYangUCAS@163.com
  • 作者简介:杨福见,男,1995年生,硕博连读研究生,从事岩石力学与工程方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No.51479193,No.51779252);湖北省技术创新专项重大项目(No.2017AAA128);率先行动“百人计划”项目(2015)。

Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction

YANG Fu-jian1, 2, HU Da-wei1, 2, TIAN Zhen-bao3, ZHOU Hui1, 2, LU Jing-jing1, 2, LUO Yu-jie1, 2, GUI Shu-qiang4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Huadong Engineering Corporation Limited, China Power Engineering Consulting Group Corporation, Hangzhou ,Zhejiang 310014, China 4. Changjiang Institute of Survey, Planning, Design and Research, Wuhan, Hubei430010, China
  • Received:2018-12-17 Revised:2019-04-30 Online:2020-01-13 Published:2020-01-05
  • About author:First author: YANG Fu-jian, male, (1995-), doctoral candidate, majoring in rock mechanics and engineering. E-mail: fjYangUCAS@163.com Corresponding author: HU Da-wei, male, (1981-), PhD, Professor, research interest: multi-field coupling of underground engineering. E-mail: dwhu@whrsm.ac.cn
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51479193, 51779252), the Major Program of Technological Innovation of Hubei Province (2017AAA128) and CAS Pioneer Hundred Talents Program (2015).

摘要: 以江汉盆地水热型地热田疏松砂岩为研究对象,施加静水压力至实测地层应力(12.5 MPa),待试样变形稳定后,在恒定渗透流量下研究了疏松砂岩在高静水压力压实作用下渗透特性演化及其机制,为水热型地热田现场尾水回灌过程设备参数的选择提供一些建议。研究结果表明:在高静水压力压实作用下渗透流量(0.5~3.0 mL/min)影响试样达到稳定渗透率的时间,但对最终的稳定渗透率不产生影响,趋于常数4.0×10?3 ?m2;试样两端压差呈非线性增加,且非线性程度随渗透流速的增加而逐渐增大,但最终趋于稳定。此外,疏松砂岩试样沿渗流方向形成管状潜蚀通道,延伸至试样的约2/3处;基于颗粒运移停止时间及管状潜蚀通道在渗流方向的扩展、延伸长度,定义了不同渗透流速下颗粒平均运移速度,发现颗粒运移速度随渗透流速的增加呈指数形式增大,而且单位时间内通过管状潜蚀通道运移的可移动微小颗粒(小于0.075 mm)量随渗透流速的增加而逐渐增多;试样两端压差超过静水压力约1/2时,试样发生潜蚀破坏,上游出现径缩现象。

关键词: 高静水压力, 疏松砂岩, 渗透率, 潜蚀作用, 颗粒运移

Abstract: The unconsolidated sandstone in hydrothermal geothermal field in Jianghan basin is taken as the research object. The hydrostatic pressure is applied to a geostress equal to 12.5 MPa. After the deformation of sample is stabilised, the evolution and mechanism of the permeability of unconsolidated sandstone under the compaction of high hydrostatic pressure are studied, which can provide some suggestions for the selection of equipment operating parameters for the tailwater recharge process in the hydrothermal geothermal field. The results indicate that under high hydrostatic pressure compaction, the permeability of unconsolidated sandstone samples tends to be a constant valued of 4.0×10?3 ?m2 within the current range of 0.5 mL/min to 3.0 mL/min. The pressure difference between the two ends of the sample increases nonlinearly with time and the degree of nonlinearity gradually increases with the increase of flow rate, but eventually tends to be stabilised. In addition, the sample of unconsolidated sandstone forms a tubular erosion channel in the direction of penetration, extending to about 2/3 of the sample. Based on the stop time of particle transportation and the extension length of tubular erosion channel in the penetration direction, the average migration velocities of particles under different flow rates are determined. It is found that the particle migration velocity increases exponentially with the increase of flow rate, and the amount of microparticle migrated per unit time increases. When the pressure difference exceeds about 1/2 of the hydrostatic pressure, the sample presents erosion damage and upstream diameter shrinkage.

Key words: high hydrostatic pressure, unconsolidated sandstone, permeability, suffusion, particle migration

中图分类号: 

  • TU 411.91
[1] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[2] 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308.
[3] 王辰霖, 张小东, 杜志刚, . 循环加卸载作用下预制裂隙煤样渗透性试验研究[J]. 岩土力学, 2019, 40(6): 2140-2153.
[4] 刘 健, 陈 亮, 王春萍, 马利科, 王 驹. 一种非稳态气体渗流条件下岩石渗透特性 参数计算方法及应用[J]. 岩土力学, 2019, 40(5): 1721-1730.
[5] 李 军, 张 杨, 胡大伟, 周 辉, 卢景景, 吕 涛, 史林肯, . 花岗岩三轴循环加卸载条件下的气体渗透率[J]. 岩土力学, 2019, 40(2): 693-700.
[6] 东振, 申瑞臣, 薛华庆, 陈艳鹏, 陈姗姗, 孙粉锦, 张福东, 刘人和, 彭涌, . 考虑滑脱效应的低阶煤动态渗透率预测新模型[J]. 岩土力学, 2019, 40(11): 4270-4278.
[7] 荣腾龙, 周宏伟, 王路军, 任伟光, 王子辉, 苏腾, . 采掘扰动与温度耦合影响下工作面 前方煤体渗透率模型研究[J]. 岩土力学, 2019, 40(11): 4289-4298.
[8] 李玉丹,董平川,周大伟,吴子森,汪 洋,曹 耐. 页岩气藏微裂缝表观渗透率动态模型研究[J]. , 2018, 39(S1): 42-50.
[9] 王 伟,方志明,李小春, . 沁水盆地煤样静水压力下渗透率实验及模型分析[J]. , 2018, 39(S1): 251-257.
[10] 冯上鑫,柴军瑞,许增光,覃 源,陈 玺. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. , 2018, 39(8): 2886-2894.
[11] 刘 超,张东明,尚德磊,赵宏刚,宋真龙,俞 欢, . 峰后围压卸载对原煤变形和渗透特性的影响[J]. , 2018, 39(6): 2017-2024.
[12] 段敏克,蒋长宝,俞 欢,陆天宇,钮彬炜,孙东玲,. 分级加-卸载条件下原煤的渗透及能耗特征研究[J]. , 2018, 39(4): 1346-1354.
[13] 荣腾龙,周宏伟,王路军,任伟光,郭依宝,. 开采扰动下考虑损伤破裂的深部煤体渗透率模型研究[J]. , 2018, 39(11): 3983-3992.
[14] 徐杨梦迪,刘建锋,徐慧宁,邹 航,胡常胜,李佳伟,. 含杂质盐岩加载全过程的渗透试验研究[J]. , 2017, 38(S1): 402-408.
[15] 尹洪武,马洪岭,施锡林,杨春和,. 盐穴储气库泥岩夹层渗透性测试新方法[J]. , 2017, 38(8): 2241-2248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!