岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 348-356.doi: 10.16285/j.rsm.2021.0613

• 基础理论与实验研究 • 上一篇    下一篇

深海富稀土沉积物的流变特性研究

李家平1,朱克超2,周旋1,陈衍力1,李昱洋1,马雯波1   

  1. 1. 湘潭大学 土木工程与力学学院,湖南 湘潭 411105;2. 广州海洋地质调查局,广东 广州 510075
  • 收稿日期:2021-04-21 修回日期:2022-05-05 出版日期:2022-06-30 发布日期:2022-07-14
  • 通讯作者: 马雯波,男,1986年生,博士,教授,主要从事海洋岩土力学、环境岩土力学方面的研究工作。E-mail: mawenbo@xtu.edu.cn E-mail:201821572175@smail.xtu.edu.cn
  • 作者简介:李家平,男,1994年生,硕士,主要从事海洋土力学研究。
  • 基金资助:
    国家自然科学基金(No.12072309);湖南省教育厅青年基金(No.19B546);湖湘高层次人才聚集工程创新团队(No.2019RS1059)。

Rheological properties of REY-rich deep-sea sediments

LI Jia-ping1, ZHU Ke-chao2, ZHOU Xuan1, CHEN Yan-li1, LI Yu-yang1, MA Wen-bo1   

  1. 1. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, Hunan 411105, China; 2. Guangzhou Marine Geological Survey, Guangzhou, Guangdong 510075, China
  • Received:2021-04-21 Revised:2022-05-05 Online:2022-06-30 Published:2022-07-14
  • Supported by:
    This work supported by the National Natural Science Foundation of China(12072309), the Education Department of Hunan Province of China(19B546), Hunan High-level Talent Gathering Engineering Innovation Team(2019RS1059).

摘要: 针对取样于太平洋的深海富稀土沉积物,采用激光粒度分析仪、液塑限联合测定仪对其常规的物理性能开展研究,并通过X射线衍射法和扫描电镜法分析其矿物成分以及微观结构。结果表明,深海富稀土沉积物具有高液限、高塑性,矿物成分主要由石英、方解石、石盐、长石、云母等原生矿物和次生矿物绿石等组成,显微结构主要由链接结构和蜂窝状的片状结构组成。针对深海富稀土沉积物这种具有流动性的超软土,采用RST流变仪开展具有不同温度与不同含水率的沉积物流变试验,并基于试验结果分析了不排水剪切强度、屈服应力、表观黏度与温度和含水率之间的关系,引入Herschel-Bulkley模型对流变参数进行探讨,通过液相转化与粒际作用理论,解释了深海富稀土沉积物的流变特征。结果表明,含水率和温度对沉积物的剪切应力与表观黏度有显著影响,与常温条件下相比,在低温环境下沉积物的剪切应力与表观黏度显著提高,表观黏度以及屈服应力随着沉积物的含水率的增加而下降。这一成果可为深海富稀土沉积物进行流态化运输提供科学依据。

关键词: 深海富稀土沉积物, 显微结构, 黏度, 剪切应力, 剪切速率

Abstract: The deep-sea rare earth-rich sediments are exploited in the Pacific district. In this study, the conventional physical properties are studied by analysis of laser particle size, test of liquid and plastic limit, and mineral compositions and microstructures are analyzed by X-ray diffraction(XRD) and scanning electronic microscope(SEM) method respectively. Test result shows that the deep-sea rare earth-rich sediments have high liquid limit, high plasticity, and their mineral compositions is mainly composed of primary minerals such as quartz, calcite, halite, feldspar, mica, and secondary minerals such as green stone. The microstructure is mainly composed of links structure and honeycomb-like sheet structure. In addition, the routine geotechnical experimental method can’t test the strength of this kind of deep-sea rare-earth-rich soft sediments,the sediment rheological tests under different temperatures and water contents are conducted by the Brookfield's RST rheometer, and the relevance of the undrained shear strength, yield stress and apparent viscosity with moisture content and temperature are analyzed according to the experimental results. Then, the Herschel-Bulkley model is introduced to discuss the rheological parameters. Further, the rheological characteristics and mechanisms of the deep-sea rare earth-rich sediments are analyzed by the phase transformation and the interparticle interaction. The results show that water content and temperature have a significant effect on the shear stress and apparent viscosity of the sediment. Compared with normal temperature conditions, the shear stress and apparent viscosity of the sediment are significantly increased in a low temperature environment. The apparent viscosity and the yield stress decrease as the moisture content of the sediment increases. This result can provide a scientific basis for the fluidized transportation of deep-sea rare earth-rich sediments.

Key words: deep-sea rare earth-rich sediments, microstructure, viscosity, shear stress, shear rate

中图分类号: 

  • TU411
[1] 刘飞禹, 江淮, 王军, . 砾石−格栅界面循环剪切软化特性试验研究[J]. 岩土力学, 2021, 42(6): 1485-1492.
[2] 刘向阳, 程桦, 黎明镜, 王雪松, 张亮亮, 周瑞鹤, . 基于浆液流变性的深埋岩层纵向劈裂注浆理论研究[J]. 岩土力学, 2021, 42(5): 1373-1380.
[3] 郭金刚, 李耀晖, 何富连, 陈见行, 赵光明, 张俊文, . 基于残余剪切强度的全长黏结锚杆拉拔模拟[J]. 岩土力学, 2021, 42(11): 2953-2960.
[4] 荣驰, 陈卫忠, 袁敬强, 张铮, 张毅, 张庆艳, 刘奇, . 新型水玻璃−酯类注浆材料及其固沙体特性研究[J]. 岩土力学, 2020, 41(6): 2034-2042.
[5] 周宗青, 李利平, 石少帅, 刘聪, 高成路, 屠文锋, 王美霞, . 隧道突涌水机制与渗透破坏灾变过程模拟研究[J]. 岩土力学, 2020, 41(11): 3621-3631.
[6] 楼烨, 张广清. 压裂液黏度对循环水力压裂影响的试验研究[J]. 岩土力学, 2019, 40(S1): 109-118.
[7] 柴 维, 龙志林, 旷杜敏, 陈佳敏, 闫超萍. 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40(S1): 359-366.
[8] 徐辰宇, 白 冰, 刘明泽, . 注CO2条件下花岗岩破裂特征的试验研究[J]. 岩土力学, 2019, 40(4): 1474-1482.
[9] 陈育民, 陈润泽, 霍正格, . 饱和悬浮塑料砂流动变形可视环剪试验研究[J]. 岩土力学, 2019, 40(10): 3709-3716.
[10] 王 军, 胡惠丽, 刘飞禹, 蔡袁强, . 粒孔比对筋土界面直剪特性的影响[J]. 岩土力学, 2018, 39(S2): 115-122.
[11] 崔国建,张传庆,刘立鹏,周 辉,程广坦,. 锚杆杆体–砂浆界面力学特性的剪切速率效应研究[J]. , 2018, 39(S1): 275-281.
[12] 戴国亮,万志辉 ,竺明星,龚维明, . 基于黏度时变性的桩端压力浆液上返高度模型及工程应用[J]. , 2018, 39(8): 2941-2950.
[13] 周恩全, 朱晓冬, 陆建飞, 王炳辉, . 液化后砂土流体特性测试装置的研发及试验研究[J]. 岩土力学, 2018, 39(12): 4698-4706.
[14] 刘婷婷,李建春,李海波,李新平,李娜娜,. 剪切速率对平直充填节理的剪切力学特性影响研究[J]. , 2017, 38(7): 1967-1973.
[15] 陈江湛,曹 函,孙平贺,吴晶晶, . 三轴加载下煤岩脉冲水力压裂扩缝机制研究[J]. , 2017, 38(4): 1023-1031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .