岩土力学 ›› 2022, Vol. 43 ›› Issue (6): 1423-1433.doi: 10.16285/j.rsm.2021.1129

• 基础理论与实验研究 •    下一篇

T型巷道中突出煤−瓦斯两相流动力学试验研究

许江1,程亮1,魏仁忠1,彭守建1,周斌2,杨海林1   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044;2. 西安科技大学 安全科学与工程学院,陕西 西安 710054
  • 收稿日期:2021-07-23 修回日期:2022-03-07 出版日期:2022-06-21 发布日期:2022-06-29
  • 作者简介:许江,男,1960年生,博士,教授,博士生导师,主要从事岩石力学与矿山瓦斯灾害等方面的研究。
  • 基金资助:
    国家自然科学基金面上项目(No.51874055,No.52074047)

Propagation characteristics of coal-gas two-phase flow in T-shaped roadway

XU Jiang1, CHENG Liang1, WEI Ren-zhong1, PENG Shou-jian1, ZHOU Bin2, YANG Hai-lin1   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
  • Received:2021-07-23 Revised:2022-03-07 Online:2022-06-21 Published:2022-06-29
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (51874055, 52074047).

摘要: 为了进一步探究突出煤−瓦斯两相流在不同巷道布置方式下的动力学行为,利用多场耦合煤矿动力灾害大型物理模拟试验系统,开展了T型巷道布置方式下的煤与瓦斯突出试验,得出了两相流运移过程中冲击力与静压的演化特征。结果表明:直线主巷内冲击力随时间呈多峰值震荡衰减趋势,体现了突出过程的脉冲特性,且距突出口越近,冲击力震荡次数越多;分岔两侧支巷内冲击力突出前期呈现两种演化趋势,其一是迅速增大至峰值后缓慢下降,其二是缓慢增大后缓慢下降;距分岔结构中心左侧1 500 mm处出现了较大冲击力值,出现重度危险区域,而右侧则在距500 mm和1 900 mm处。利用突出运移动态图像将整个过程分为单相气流和两相流两个阶段,单相气流阶段中分岔后支巷的冲击力就迅速上升至峰值,而在两相流阶段分岔前主巷的冲击力上升至最高值,存在分岔后冲击力峰值高于分岔前的现象。突出过程中,巷道壁面上静压值总体偏低;静压随时间呈间歇式波动发展,且其峰值点自煤层由近及远呈先增大后减小的趋势;距突出口越远,直线主巷内静压出现峰值的时刻越滞后;分岔支巷内静压左右两侧的演化近似,随着时间推进,分岔结构前后静压衰减逐渐增大。

关键词: 煤与瓦斯突出, T型巷道, 冲击力, 静压

Abstract: In order to further explore the dynamic behaviors of outburst coal-gas two-phase flow under different roadway layouts, the self-developed multi-field coupled coal mine dynamic disaster large-scale simulation test system was used to carry out coal and gas outburst tests under the T-shaped roadway layout. The tests obtained the evolution law of impact force and static pressure during the migration of outburst coal-gas two-phase flow in the roadway. The results show that the impact force in the straight main roadway shows a trend of multi-peak oscillation and attenuation over time, reflecting the pulse characteristics of the outburst process. The closer to the outburst hole, the more impact force oscillation times. The impact force in the branch roads on both sides of the bifurcation has two evolutionary trends in the early stage. One is that it increases rapidly to the peak and then decreases slowly, and the other is that it increases slowly and then decreases slowly. Larger impact force values appear at 1 500 mm from the left side of the bifurcation structure and at 500 and 1 900 mm from the right side, indicating that these areas are severely dangerous. The whole process is divided into two stages of single-phase flow and two-phase flow by using the outburst motion image. In the single-phase flow stage, the impact force after the bifurcation structure firstly rises rapidly to the peak value. The impact force before the bifurcation structure rises to a peak point in the two-phase flow stage. There is a phenomenon that the peak value of the impact force after the bifurcation is higher than that before the bifurcation. During the outburst process, the static pressure value on the wall of the roadway is generally low. The static pressure fluctuates intermittently with time, and the peak value from near the coal seam to far first increases and then decreases. The time when the static pressure in the straight main roadway reaches the peak value is delayed with the increase of the distance from the outburst hole. The evolution of the static pressure on the left and right sides of the branch roadway is similar. As time progresses, the static pressure attenuation before and after the bifurcation structure gradually increases.

Key words: coal and gas outburst, T-shaped roadway, impact force, static pressure

中图分类号: 

  • TD353
[1] 陈泰江, 章广成, 向欣, . 落石冲击混凝土棚洞力学特性研究[J]. 岩土力学, 2022, 43(1): 277-285.
[2] 叶阳, 曾亚武, 杜欣, 孙翰卿, 陈曦, . 球形砾石碰撞损伤破碎三维离散元模拟研究[J]. 岩土力学, 2020, 41(S1): 368-378.
[3] 赵红华, 刘聪, 唐小微, 魏焕卫, 朱丰, . 基于透明土和三维重构技术的空间变形可视 化测量系统的研究[J]. 岩土力学, 2020, 41(9): 3170-3180.
[4] 程亮, 许江, 周斌, 彭守建, 闫发志, 杨孝波, 杨文健. 不同瓦斯压力对煤与瓦斯突出两相流 传播规律的影响研究[J]. 岩土力学, 2020, 41(8): 2619-2626.
[5] 王东坡, 张小梅. 泥石流冲击弧形拦挡坝动力响应研究[J]. 岩土力学, 2020, 41(12): 3851-3861.
[6] 贺雷, 张洋, 马山青, . 静压沉桩引起邻近隧道水平位移计算方法研究[J]. 岩土力学, 2020, 41(11): 3740-3747.
[7] 王友彪, 姚昌荣, 刘赛智, 李亚东, 张 迅. 泥石流对桥墩冲击力的试验研究[J]. 岩土力学, 2019, 40(2): 616-623.
[8] 王永洪, 张明义, 白晓宇, 刘俊伟, . 基于光纤光栅传感技术的静压沉桩贯入特性及 影响因素研究[J]. 岩土力学, 2019, 40(12): 4801-4812.
[9] 肖思友, 苏立君, 姜元俊, 李丞, 刘振宇, . 坡度对碎屑流冲击立式拦挡墙力学特征的影响[J]. 岩土力学, 2019, 40(11): 4341-4351.
[10] 朱小军, 李文帅, 费 康, 孔伟阳, 龚维明, . 砂土中桶形基础静压沉贯过程桶-土受力分析[J]. 岩土力学, 2019, 40(1): 199-206.
[11] 王永洪,张明义,刘俊伟,白晓宇, . 超孔隙水压力对低塑性黏性土桩土界面抗剪强度的影响[J]. , 2018, 39(3): 831-838.
[12] 李镜培, 操小兵, 李 林, 龚卫兵, . 静压沉桩与CPTU贯入离心模型试验及机制研究[J]. 岩土力学, 2018, 39(12): 4305-4311.
[13] 宗钟凌,鲁先龙,李青松,张振东,. 静压钢管注浆微型桩承载性能试验研究[J]. , 2017, 38(S2): 323-329.
[14] 张明义,白晓宇,高 强,王永洪,陈小钰,刘俊伟,. 黏性土中桩-土界面受力机制室内试验研究[J]. , 2017, 38(8): 2167-2174.
[15] 练继建,马煜祥,王海军,王芃文,蒋杏雨, . 筒型基础在粉质黏土中的静压沉放试验研究[J]. , 2017, 38(7): 1856-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .