岩土力学 ›› 2022, Vol. 43 ›› Issue (11): 3027-3035.doi: 10.16285/j.rsm.2021.2157

• 基础理论与实验研究 • 上一篇    下一篇

黄豆脲酶诱导碳酸钙沉淀多变量试验研究

崔猛1, 2,符晓1,郑俊杰3,吕苏颖1,熊辉辉1,曾晨3,韩尚宇4   

  1. 1. 南昌工程学院 土木与建筑工程学院,江西 南昌 330099;2. 江西省水利土木特种加固与安全监控工程研究中心,江西 南昌 330099; 3. 华中科技大学 土木与水利工程学院,湖北 武汉 430074;4. 南昌航空大学 土木建筑学院,江西 南昌 330063
  • 收稿日期:2021-12-23 修回日期:2022-07-13 出版日期:2022-11-11 发布日期:2022-11-29
  • 通讯作者: 符晓,女,1988 年生,博士研究生,主要从事微生物加固技术的研究。E-mail: 524308755@qq.com E-mail:cmyfwy@126.com
  • 作者简介:崔猛,男,1986 年生,博士,副教授,主要从事土体加固技术与微细观测试技术等方面的研究。
  • 基金资助:
    国家自然科学基金项目(No.52268059,No. 51609114);江西省教育厅基金项目(No. GJJ19094)。

Multivariate experimental study on soybean urease induced calcium carbonate precipitation

CUI Meng1, 2, FU Xiao1, ZHENG Jun-jie3, LÜ Su-ying1, XIONG Hui-hui1, ZENG Chen3, HAN Shang-yu4   

  1. 1. School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China; 2. Jiangxi Province Key Laboratory of Hydraulic & Civil Engineering Infrastructure Security, Nanchang, Jiangxi 330099, China; 3. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 4. College of Civil Architecture, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
  • Received:2021-12-23 Revised:2022-07-13 Online:2022-11-11 Published:2022-11-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52268059, 51609114) and the Science and Technology Research Program of Jiangxi Provincial Education Department (GJJ190949).

摘要: 植物源脲酶诱导碳酸钙沉淀(enzyme induced carbonate precipitation,简称EICP)可以显著改善砂土的工程力学特性,但在具体操作时,参数取值无对应规范,固化效果有待提升。基于黄豆脲酶,研究了温度、脲酶浓度、尿素浓度、钙浓度、pH值、钙源种类等变量对脲酶活性与碳酸钙沉淀的影响,并进行了沉淀物(碳酸钙晶体)的扫描式电子显微镜(scanning electron microscope,简称SEM)与X射线衍射(X-ray diffraction,简称XRD)测试,在此基础上开展了黄豆脲酶固化砂的无侧限抗压强度与固化效果试验研究。结果表明:脲酶活性随脲酶浓度的增加而线性增长,但存在温度阈值,温度超过阈值后,脲酶将完全失活,且阈值随脲酶浓度的增大而降低;尿素浓度与pH值共同影响脲酶活性,二者存在一个最优组合,当尿素浓度在0.1~1.0 mol/L时最优pH值为7,当尿素浓度在1.0~1.5 mol/L时最优pH值为8。脲酶是沉淀反应的催化剂,脲酶浓度越高,反应越完全,碳酸钙沉淀率越高;尿素与钙溶液则主要通过掺入量影响碳酸钙沉淀量,掺量比例宜为1:1,且二者浓度与pH值可通过影响脲酶活性来影响碳酸钙的沉淀情况;不同钙源对碳酸钙沉淀量的影响幅度不大。不同钙源沉淀碳酸钙晶体的成分与密度基本相同,但晶体结构差异较大,氯化钙沉淀碳酸钙晶体以块状为主,表面分布球状、类球状晶体,胶结面大,可作为EICP技术中较为理想的钙源。基于黄豆脲酶和氯化钙钙源固化砂的无侧限抗压强度约为掺粉煤灰砂样的6倍,通过SEM图像可发现,沉淀碳酸钙晶体包裹并黏结砂粒成为整体,固化效果非常理想。

关键词: 黄豆脲酶, 脲酶活性, 碳酸钙沉淀, 固化砂, 试验研究

Abstract: The plant-derived urease-induced calcium carbonate precipitation (EICP) can significantly improve the engineering mechanical properties of sand. However, there is no corresponding specification for the parameter value in the specific operation, and the reinforcement effect needs to be improved. Based on soybean urease, the effects of temperature, urease concentration, urea concentration, calcium concentration, pH, calcium source type and other variables on urease activity and calcium carbonate precipitation were studied, and the tests on SEM and XRD of precipitated calcium carbonate crystals were carried out. On this basis, the unconfined compressive strength and curing effect of soybean urease-cured sand were tested. The results showed that urease activity increased linearly with the increase of urease concentration, but there was a temperature threshold value. When the temperature exceeded the threshold, urease activity was completely inactivated, and the threshold decreased with the increase of urease concentration. Urea concentration and pH affected urease activity together, and there was an optimal combination of them, that is, the optimal pH is 7 when urea concentration is 0.1-1 mol/L, and it is 8 when urea concentration is1.0-1.5 mol/L. Urease is the catalyst of a precipitation reaction. The higher the urease concentration was, the more complete the reaction was, and the higher the precipitation rate of calcium carbonate was. For urea and calcium solution, the dosage mainly affected the precipitation of calcium carbonate, and the dosage ratio should be 1:1. The concentration and pH of urea and calcium solution can affect the precipitation of calcium carbonate by affecting urease activity. Different calcium sources had little influence on the precipitation amount of calcium carbonate. The composition and density of precipitated calcium carbonate crystals from different calcium sources were basically the same, but the crystal structure was very different. The calcium chloride precipitated calcium carbonate crystals are mainly massive, with spherical and spheroidal crystals on the surface and large cementation surface, which can be used as an ideal calcium source in EICP technology. The unconfined compressive strength of the sand solidified with urease from soya beans and calcium chloride as calcium source was about 6 times that of the sand mixed with coal fly ash. SEM images show that the precipitated calcium carbonate crystals wrap and bond the sand into a whole, and the curing effect is ideal.

Key words: soybean urease, urease activity, calcium carbonate precipitation, solidified sand, experimental study

中图分类号: 

  • TU 441
[1] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[2] 郑文杰, 胡文乐, 袁可, 文少杰, . 脲酶矿化作用机制及其提升仿古黏土砖瓦 阻水性能研究[J]. 岩土力学, 2022, 43(S2): 255-264.
[3] 喻成成, 卢正, 姚海林, 刘杰, 詹永祥, . 微生物诱导碳酸钙沉淀改性膨胀土试验研究[J]. 岩土力学, 2022, 43(S1): 157-163.
[4] 李驰, 田蕾, 董彩环, 张永锋, 王燕星, . MICP技术联合多孔硅吸附材料对锌铅 复合污染土固化/稳定化修复的试验研究[J]. 岩土力学, 2022, 43(2): 307-316.
[5] 张茜, 叶为民, 刘樟荣, 王琼, 陈永贵, . 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357.
[6] 雷勇, 李鹏甲, 刘泽宇, 李金朝, 胡伟. 岩溶区穿越溶洞基桩屈曲临界荷载计算方法 与试验研究[J]. 岩土力学, 2022, 43(12): 3347-3356.
[7] 熊雨, 邓华锋, 李建林, 程雷, 朱文羲. 火山灰增强微生物固化砂土效果的试验研究[J]. 岩土力学, 2022, 43(12): 3403-3415.
[8] 蔡灿, 张沛, 孙明光, 杨迎新, 谢松, 蒲治成, 杨显鹏, 高超, 谭政博, . 油气钻井中的分离式冲击−切削复合破岩机制研究[J]. 岩土力学, 2021, 42(9): 2535-2544.
[9] 董博文, 刘士雨, 俞缙, 肖杨, 蔡燕燕, 涂兵雄. 基于微生物诱导碳酸钙沉淀的天然海水 加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114.
[10] 杨司盟, 彭劼, 温智力, 刘志明, 冷勐, 许鹏旭, . 浓缩海水作为钙源在微生物诱导碳酸钙加固砂土中的应用[J]. 岩土力学, 2021, 42(3): 746-754.
[11] 周翠英, 梁彦豪, 刘春辉, 刘镇, . 天然红层风化土成膜试验研究[J]. 岩土力学, 2020, 41(S1): 132-138.
[12] 褚峰, 张宏刚, 邵生俊, 邓国华. 人工合成类废布料纤维纱加筋黄土力学变形性质及抗溅蚀特性试验研究[J]. 岩土力学, 2020, 41(S1): 394-403.
[13] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[14] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[15] 雷勇, 邓加政, 刘泽宇, 李君杰, 邹根. 考虑荷载位置偏移的空洞岩石地基极限承载力 计算方法[J]. 岩土力学, 2020, 41(10): 3326-3331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .