岩土力学 ›› 2022, Vol. 43 ›› Issue (12): 3357-3371.doi: 10.16285/j.rsm.2022.0284

• 基础理论与实验研究 • 上一篇    下一篇

节理剪切过程中两翼微凸体接触规律及剪应力 模型研究

刘国磊1,马秋峰1,崔嵛1,李公成1,田静2   

  1. 1. 山东理工大学 资源与环境工程学院,山东 淄博 255000;2. 山东煤炭技术学院 机械工程系,山东 淄博 255120
  • 收稿日期:2022-03-10 修回日期:2022-05-30 出版日期:2022-12-28 发布日期:2023-01-02
  • 通讯作者: 马秋峰,男,1990年生,博士,讲师,主要从事岩石力学与煤岩动力灾害方向的研究。E-mail: maqiufeng666@sina.com E-mail: liuguolei2003@163.com
  • 作者简介:刘国磊,男,1985年生,博士,副教授,主要从事冲击地压灾害与防治方面的研究。
  • 基金资助:
    国家自然科学基金青年基金项目(No.51904178);山东省自然科学基金博士基金项目(No.ZR2018BEE009)

Contact law of two wing asperities in the process of joint shear and shear stress model

LIU Guo-lei1, MA Qiu-feng1, CUI Yu1, LI Gong-cheng1, TIAN Jing2   

  1. 1. School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, Shandong 255000, China; 2. Department of Mechanical Engineering, Shandong Coal Technology College, Zibo, Shandong 255120, China
  • Received:2022-03-10 Revised:2022-05-30 Online:2022-12-28 Published:2023-01-02
  • Supported by:
    This work was supported by the Young Scholars of National Natural Science Foundation of China(51904178) and the Shandong Natural Science Foundation PhD Program (ZR2018BEE009).

摘要: 为了探究节理剪切过程中微凸体接触规律,对张拉型节理面进行了三维扫描与直剪试验。通过三维点云追踪技术对节理面剪切过程中微凸体接触面积和接触角度进行了统计分析,基于微凸体接触规律建立了剪应力模型。在此过程中,得到如下结论:(1)剪切过程中,随着剪切位移的增大,接触面积逐渐减小,接触点由散落式分布转化为集中式分布,单个接触点面积逐渐增大,接触点数量逐渐减少,法向应力对接触面积影响显著,法向应力越大,接触面积越大。(2)在剪应力峰值前,上部岩块中大多数相互接触的微凸体处于“爬坡”状态,在剪应力峰值以后出现部分接触微凸体处于“背离”状态。剪应力峰值以前绝大多数接触的微凸体能够提供阻抗剪切的力,而在峰后存在部分微凸体无法提供阻抗剪切的力。(3)接触角近似呈现正态分布,随着剪切位移的增大,接触角的平均值呈现先增大后减小的规律。(4)对模型进行验证,结果表明,模型不仅能够描述不同法向应力条件下节理面的抗剪强度,而且能够反映剪应力−剪切位移的关系,证明了模型的合理性,为准确预测节理面抗剪强度提供了一种新的计算方法。

关键词: 节理, 剪切, 接触, 三维扫描, 本构模型

Abstract: In order to explore the contact law of asperities in the joint during shearing process, three-dimensional scanning and direct shear tests were carried out on the tensile joint surface. The contact area and contact angle of asperities in the joint surface shearing process were analyzed by 3D point cloud tracking technology, and a shear stress model was established based on the contact law of asperities. In this process, the following conclusions were obtained: 1) In the shear process, with the increase of shear displacement, the contact area gradually decreases, and the contact points change from scattered distribution to centralized distribution. The area of a single contact point gradually increases, and the number of contact points gradually decreases. Normal stress has a significant impact on the contact area. The larger the normal stress, the larger the contact area. 2) Before the peak value of shear stress, most of the contacting asperities in the upper rock block are in a “climbing” state, and after the peak value of shear stress, some contacting asperities are in a “deviating” state. Before the peak of shear stress, most of the asperities contacted can provide shear resistance, while after the peak, some asperities cannot provide shear resistance. 3) The contact angle approximately presents a normal distribution and the average contact angle first increases and then decreases with the increase of shear displacement. 4) The verification results of the model in this paper show that the model can not only describe the shear strength of joint surface under different normal stress conditions, but also reflect the relationship between shear stress and shear displacement, which proves the rationality of the model. The model in this paper provides a new calculation method for accurately predicting the shear strength of joint surface.

Key words: joint, shearing, contact, three dimensional scanning, constitutive model

中图分类号: 

  • TU452
[1] 林海, 曾一帆, 周创兵, 董平霄, 施建勇, . 褶皱土工膜+针刺钠基膨润土防水毯复合衬里的剪切试验研究[J]. 岩土力学, 2023, 44(2): 355-361.
[2] 王元战, 龚晓龙, 王轩, 陈艳萍, 谢涛, . 偏压固结下碱渣土循环累积孔压及强度弱化规律研究[J]. 岩土力学, 2023, 44(2): 373-380.
[3] 赵凯, 邵帅, 邵生俊, 魏军政, 张少英, 张玉. 平面应变下原状黄土的剪切带研究[J]. 岩土力学, 2023, 44(2): 433-441.
[4] 杨焕强, 刘杨, 张晴晴, 熊冬, . 考虑页岩层理剪切滑移的水力裂缝几何参数计算方法[J]. 岩土力学, 2023, 44(2): 461-472.
[5] 张志飞, 黄曼, 唐志成, . 估算异性岩石不连续面峰值剪切强度的经验公式[J]. 岩土力学, 2023, 44(2): 507-519.
[6] 田世轩, 郭保华, 孙杰豪, 程坦, . 不同边界条件下剪切速率对类岩石节理剪切力学特性的影响[J]. 岩土力学, 2023, 44(2): 541-551.
[7] 赵顺利, 杨之俊, 傅旭东, 方正, . 考虑应变局部化的粗粒料剪切损伤力学机制[J]. 岩土力学, 2023, 44(1): 31-42.
[8] 尹敬涵, 崔臻, 盛谦, 陈健, 张茂础, . 循环荷载作用下岩石劈裂结构面剪切力学特性演化与影响因素研究[J]. 岩土力学, 2023, 44(1): 109-118.
[9] 郭佳奇, 程立攀, 朱斌忠, 田永超, 黄鑫. 持续开挖效应下结构面剪切力学性质与能量特征研究[J]. 岩土力学, 2023, 44(1): 131-143.
[10] 许健, 周立阳, 胡科, 李彦锋, 武智鹏, . 受振动荷载扰动裂隙性黄土单轴压缩力学行为研究[J]. 岩土力学, 2023, 44(1): 171-182.
[11] 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316.
[12] 何冠, 姚仰平. 统一硬化模型与下加载面模型的理论关系[J]. 岩土力学, 2022, 43(S2): 11-22.
[13] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[14] 张涛, 徐卫亚, 孟庆祥, 王环玲, 闫龙, 钱坤, . 基于3D打印技术的柱状节理岩体试样 力学特性试验研究[J]. 岩土力学, 2022, 43(S2): 245-254.
[15] 李水江, 童艳光, 王军, 应梦杰, 刘飞禹, . 双向循环荷载作用下砾石−格栅界面动力剪切特性[J]. 岩土力学, 2022, 43(S2): 291-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .