岩土力学 ›› 2023, Vol. 44 ›› Issue (4): 1230-1244.doi: 10.16285/j.rsm.2022.0725

• 数值分析 • 上一篇    

含砂岩石力学特性及其致灾机制研究

岳豪,杨胜利,翟瑞昊,张燊,崔轩   

  1. 中国矿业大学(北京)能源与矿业学院,北京 100083
  • 收稿日期:2022-05-17 接受日期:2022-10-08 出版日期:2023-04-18 发布日期:2023-04-29
  • 通讯作者: 杨胜利,男,1983年生,博士,教授,主要从事矿山压力与岩石力学方面的相关研究。E-mail: yslcumtb@163.com E-mail: yuehaocumtb@163.com
  • 作者简介:岳豪,男,1995年生,博士研究生,主要从事矿山压力与岩石力学方面的相关研究。
  • 基金资助:
    国家自然科学基金(No.51974320,No.51934008,No.52121003);河北省自然科学基金(No.E2020402041)。

Study of the mechanical properties of sand-bearing rocks and their disaster-causing mechanisms

YUE Hao, YANG Sheng-li, ZHAI Rui-hao, ZHANG Shen, CUI Xuan   

  1. School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
  • Received:2022-05-17 Accepted:2022-10-08 Online:2023-04-18 Published:2023-04-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51974320, 51934008, 52121003) and the Natural Science Foundation of Heibei Province (E2020402041).

摘要: 含砂岩石是发生突水溃砂灾害前在高位关键层形成的特殊岩石,其强度与力学性质均与普通岩石不同,决定着高位关键层的稳定性。研究发现:不同裂隙角的裂隙岩石与含砂岩石具有不同的特征应力,且随着裂隙角的增加,裂隙岩石与含砂岩石的起裂应力、损伤应力和峰值应力均增加,双峰应力先增加后减小。相同裂隙角下的含砂岩石各特征应力均小于裂隙岩石,说明砂体对岩石特征应力具有弱化效应。从破坏形态来看,裂隙岩石易呈现翼形拉伸裂隙,含砂岩石在低裂隙角(30º)条件下形成拉伸裂隙,高裂隙角(60º)条件下易形成剪切裂隙,表明砂体进入岩石裂隙后对岩石具有剪切效应。同时建立了充砂力学模型,指出了含砂岩石强度小于裂隙岩石的原因是砂体降低了岩石的摩擦系数。根据声发射累计振铃计数定义了岩石损伤量并分析了含砂岩石致灾机制,现场溃砂灾害可分为4个阶段:弹性变形阶段、裂隙扩展阶段、蓄砂储能阶段、溃砂释能阶段。最后利用PFC2D验证了裂隙岩石与含砂岩石的差异性,分析了不同类型岩石的能量演化规律。研究结果可作为煤矿顶板突水溃砂现象的前兆信息识别,有助于指导突水溃砂工作面的安全生产。

关键词: 声发射, 裂隙岩石, 特征应力, 应力强度因子

Abstract: Sand-bearing rock is a special rock formed in the high-level key layer before water inrush and sand burst disaster. Its strength and mechanical properties are different from ordinary rock, which determines the stability of the high-level key layer. It is found that the fractured rock and sandy rock with different fracture angles have different characteristic stresses, and with the increase of fracture angle, the initiation stress, damage stress and peak stress of fractured rock and sandy rock increase, and the bimodal stress first increases and then decreases. The characteristic stresses of sandy rock under the same fracture angle are less than those of fractured rock, indicating that the sand body has a weakening effect on the characteristic stress of rock. From the perspective of failure form, the fractured rock is easy to show wing tensile fracture, the sandy rock is easy to form tensile fracture under the condition of low fracture angle (30º) and shear fracture under the condition of high fracture angle (60º), indicating that the sand body has shear effect on the rock after entering the rock fracture. At the same time, the mechanical model of sand filling is established, and it is pointed out that the reason why the strength of sandy rock is less than that of fractured rock is that the sand body reduces the friction coefficient of rock. Based on the cumulative acoustic emission ringing counts, the amount of rock damage is defined and the mechanism of sand-bearing rocks causing the disaster is analysed. The on-site sand-bursting disaster can be divided into four phases: 1) elastic deformation phase; 2) fracture expansion phase; 3) sand and energy storage phase; 4) sand-bursting energy release phase. Finally, PFC2D is used to verify the differences between fractured rocks and sandy rocks, and the energy evolution laws of different types of rocks are analyzed. The research results can be used as precursory information identification of water inrush and sand burst phenomenon in coal mine roof, and help to guide the safe production of water inrush and sand burst face.

Key words: acoustic emission, crack rock mass, characteristics stress, stress intensity factor

中图分类号: 

  • TU452
[1] 于洋, 王泽华, 唐才萱. 单轴压缩下酸腐蚀花岗岩能量演化与分形特征[J]. 岩土力学, 2023, 44(7): 1971-1982.
[2] 张光, 吴顺川, 张诗淮, 郭沛, . 砂岩单轴压缩试验P波速度层析成像及声发射特性研究[J]. 岩土力学, 2023, 44(2): 483-496.
[3] 罗丹旎, 卢思航, 苏国韶, 陶洪辉, . 含预制单裂隙花岗岩的真三轴单面临空岩爆试验研究[J]. 岩土力学, 2023, 44(1): 75-87.
[4] 郭佳奇, 程立攀, 朱斌忠, 田永超, 黄鑫. 持续开挖效应下结构面剪切力学性质与能量特征研究[J]. 岩土力学, 2023, 44(1): 131-143.
[5] 李冬冬, 盛谦, 肖明, 王小毛, . 基于改进颗粒流声发射片的地下厂房洞室围岩局部损伤细观机制研究[J]. 岩土力学, 2022, 43(S2): 117-129.
[6] 张东晓, 郭伟耀, 赵同彬, 谷雪斌, 陈玏昕, . 岩石I型裂纹定向扩展规律试验研究[J]. 岩土力学, 2022, 43(S2): 231-244.
[7] 王立, 倪彬, 谢伟, 王书昭, 寇坤, 赵奎, . 不同粒径黄砂岩微观−宏观裂纹演化机制研究[J]. 岩土力学, 2022, 43(S2): 373-381.
[8] 朱星, 刘汉香, 胡桔维, 范杰, . 砂岩破坏声发射临界慢化前兆特征试验研究[J]. 岩土力学, 2022, 43(S1): 164-172.
[9] 胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, . 离散裂隙网络对岩石力学性质和声发射特性 影响的颗粒流分析[J]. 岩土力学, 2022, 43(S1): 542-552.
[10] 孙冰, 唐文福, 曾晟, 侯珊珊, 方耀楚, . 基于自组织临界理论的岩石声发射能量 与时间的统计分析[J]. 岩土力学, 2022, 43(9): 2525-2538.
[11] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
[12] 王刚, 宋磊博, 刘夕奇, 包春燕, 吝曼卿, 刘广建, . 非贯通节理花岗岩剪切断裂力学特性及 声发射特征研究[J]. 岩土力学, 2022, 43(6): 1533-1545.
[13] 张黎明, 王在泉, 赵天阳, 丛宇, . 孔隙水压力作用下砂岩裂纹扩展行为的试验研究[J]. 岩土力学, 2022, 43(4): 901-908.
[14] 侯奎奎, 吴钦正, 张凤鹏, 彭超, 刘焕新, 刘兴全, . 不同地应力测试方法在三山岛金矿2 005 m 竖井建井区域的应用及其地应力分布规律研究[J]. 岩土力学, 2022, 43(4): 1093-1104.
[15] 孙博, 任富强, 刘冬桥, . 基于声发射多重分形特征的层状板岩失稳前兆研究[J]. 岩土力学, 2022, 43(3): 749-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖衡林,余天庆. 山区挡土墙土压力的现场试验研究[J]. , 2009, 30(12): 3771 -3775 .
[2] 江洎洧,项 伟,唐辉明,曾 斌,黄 玲. 极限蓄水位下洞坪水库大沟湾滑坡稳定性预测[J]. , 2010, 31(3): 805 -810 .
[3] 卢 正,姚海林,刘干斌,骆行文. 简谐线源荷载作用下热流固耦合地基的动力响应[J]. , 2010, 31(7): 2309 -2316 .
[4] 赵明华,孙建兵,张永杰. 基于Winkler模型的双向增强体复合地基沉降计算[J]. , 2010, 31(11): 3459 -3463 .
[5] 杨玉贵,赖远明,李双洋,董元宏. 冻结粉土三轴压缩变形破坏与能量特征分析[J]. , 2010, 31(11): 3505 -3510 .
[6] 崔皓东,张家发,张 伟,王金龙. 南水北调中线典型承压水地层渠段渗流场数值分析[J]. , 2010, 31(S2): 447 -451 .
[7] 付 伟,汪 稔,胡明鉴,向焱红. 不同温度下冻土单轴抗压强度与电阻率关系研究[J]. , 2009, 30(1): 73 -78 .
[8] 孙富学,蔡晓鸿,朱云辉. 基于初参数法的多心圆拱隧道衬砌结构内力与变位求解[J]. , 2009, 30(4): 1127 -1130 .
[9] 李守巨,刘迎曦,于 贺. 多孔材料等效导热系数与分形维数关系的数值模拟研究[J]. , 2009, 30(5): 1465 -1470 .
[10] 胡 昕,洪宝宁,杜 强,孟云梅. 含水率对煤系土抗剪强度的影响[J]. , 2009, 30(8): 2291 -2294 .