岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 231-244.doi: 10.16285/j.rsm.2021.2188

• 基础理论与实验研究 • 上一篇    下一篇

岩石I型裂纹定向扩展规律试验研究

张东晓1, 2,郭伟耀1, 2,赵同彬1, 2,谷雪斌1, 2,陈玏昕1, 2   

  1. 1. 山东科技大学 能源与矿业工程学院,山东 青岛 266590; 2. 山东科技大学 矿山灾害预防控制省部共建国家重点实验室培育基地,山东 青岛 266590
  • 收稿日期:2021-12-28 修回日期:2022-06-24 出版日期:2022-10-10 发布日期:2022-10-03
  • 通讯作者: 郭伟耀,男,1990年生,博士,教授,硕士生导师,主要从事矿山岩石力学、冲击地压等方面的研究工作。E-mail: 363216782@qq.com; gwy2018@sdust.edu.cn E-mail:1290763952@qq.com
  • 作者简介:张东晓,男,1996年生,博士研究生,主要从事矿山岩石力学、冲击地压等方面的研究工作。
  • 基金资助:
    山东省自然科学基金重大基础研究资助项目(No.ZR2019ZD13);国家自然科学基金青年基金(No.51904165);山东省自然科学基金(No.ZR2019QEE026)。

Experimental study on directional propagation of rock type-Ⅰ crack

ZHANG Dong-xiao1, 2, GUO Wei-yao1, 2, ZHAO Tong-bin1, 2, GU Xue-bin1, 2, CHEN Le-xin1, 2   

  1. 1. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Received:2021-12-28 Revised:2022-06-24 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This work was supported by the Major Program of Shandong Provincial Natural Science Foundation (ZR2019ZD13), the Young Scholars of National Natural Science Foundation of China (51904165) and the Shandong Provincial Natural Science Foundation (ZR2019QEE026).

摘要: 为精准获得岩石I型裂纹扩展演化全过程,采用一种简易裂纹定向扩展装置开展了不同岩性试样裂纹扩展试验研究,借助声发射及数字散斑技术对裂纹扩展全过程进行了监测,建立了裂纹定向扩展力学模型,分析了裂纹扩展过程中声发射及变形场的演化规律,提出了评价岩石I型裂纹扩展难易程度的能量指标CE,探讨了I型裂纹定向起裂扩展机制。结果表明:该简易裂纹定向扩展装置能够有效实现I型裂纹沿预定方向稳定扩展,其起裂角均小于10º,同时通过简化力学模型计算得到白砂岩、灰砂岩的裂纹扩展峰值强度与巴西劈裂抗拉强度相比偏差分别为22.76%、7.53%;根据变形场演化规律,可将裂纹扩展分为微裂隙发育(散斑变形场分区不明显)、主控裂纹孕育(散斑变形场出现分区现象)和主控裂纹扩展3个阶段;声发射演化过程可分为平静期、缓增期、急增期和降低期4个阶段,由于灰砂岩相较于白砂岩质地更致密、更坚硬,导致其声发射平静期长,而后3个阶段持续时间短;将载荷−位移曲线峰前与峰后的面积之比定义为评价岩石I型裂纹扩展难易程度的能量指标CE,计算得到灰砂岩、白砂岩的CE分别为13~16、1~2,表明CE可有效评价岩石I型裂纹扩展难易程度;岩石I型裂纹起裂扩展机制可概况为:在加载峰值前裂隙尖端受最大拉应力作用,存储的弹性能快速增加、耗散能缓慢增加,但在加载峰值后裂隙尖端存储弹性能超过其储能极限迅速释放,此时输入能大部分转化为耗散能促进主控裂纹快速扩展。后续将对裂纹定向扩展试验装置进一步优化改进,以期为裂纹扩展机制、岩石破坏前兆信息、裂纹止裂原理等研究提供一种新方法,同时为工程现场煤岩层定向爆破、压裂、止裂等相关技术优化提供理论指导。

关键词: 岩石, I型裂纹, 声发射(AE), 数字散斑(DIC), 能量指标, 扩展机制

Abstract: To obtain the rock type-Ⅰ crack propagation process accurately, a simple crack directional propagation device was used to test the crack propagation of different rock types. The crack propagation process of rock is monitored with acoustic emission (AE) and digital image correlation method (DICM). A mechanical model of crack directional propagation was established. Then, AE and deformation field evolution laws during crack propagation process are analyzed, and a new crack propagation energy index (CE) is proposed to evaluate the difficulty of rock type-Ⅰ crack propagation and the crack initiation and propagation mechanism is discussed. The results show that, the simple crack directional propagation device can effectively realize the stable propagation of type-Ⅰ crack along the predetermined direction, the crack initiation angle is less than 10º, and the deviations between the peak strength of crack propagation calculated by simplified mechanical model and the tensile strength of Brazilian splitting are 22.76% and 7.53% for white sandstone and grey sandstone, respectively. According to the deformation field evolution law, the crack propagation can be divided into three stages: microcrack development (speckle deformation field is still uniform), main crack propagation (zone phenomenon appears in speckle deformation field) and main crack propagation. Four stages including quiet stage, slow increase stage, rapid increase stage and decreasing stage can be identified in the AE evolution process. Compared with white sandstone, the gray sandstone is denser and the main cracks are fully developed, resulting in a long quiet stage of AE, while the last three stages are short. The area ratio of pre-peak area to post-peak areaof load-displacement curve was defined as CE, the CE of gray sandstone and white sandstone are 13−16, 1−2, respectively, which shows that the CE can effectively evaluate the difficulty of type-I crack propagation. Rock type-I crack initiation and propagation mechanism can be summarized as follows: before the peak, the prefabricated crack tip is subjected to the maximum tensile stress, the elastic energy increases rapidly, and the dissipated energy increases slowly; nevertheless after the peak, elastic energy exceeds its energy storage limit and is released rapidly, most of the input energy is converted into dissipated energy, which results in a propagation rapid of crack. In the future, the crack directional propagation device will be optimized and improved, and it is expected to provide a new method for the study of crack propagation mechanism, rock fail precursor information and crack arrest principle, and to provide theoretical guidance for the optimization of coal strata directional blasting, fracturing, fracture arrest and other related technologies in the engineering site.

Key words: rock, type-I crack, acoustic emission (AE), digital image correlation (DIC), energy index, propagation mechanism

中图分类号: 

  • TD325
[1] 高峰, 熊鑫, 熊信, 周科平, . 饱和度对玄武岩微波响应的影响试验研究[J]. 岩土力学, 2022, 43(S2): 43-51.
[2] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[3] 张涛, 徐卫亚, 孟庆祥, 王环玲, 闫龙, 钱坤, . 基于3D打印技术的柱状节理岩体试样 力学特性试验研究[J]. 岩土力学, 2022, 43(S2): 245-254.
[4] 岑夺丰, 刘畅, 黄达. 灰岩层面拉剪力学特性及层面起伏效应研究[J]. 岩土力学, 2022, 43(S1): 77-87.
[5] 朱星, 刘汉香, 胡桔维, 范杰, . 砂岩破坏声发射临界慢化前兆特征试验研究[J]. 岩土力学, 2022, 43(S1): 164-172.
[6] 匡智浩, 李邵军, 杜灿勋, 邱士利, 吝曼卿, 杜三林, . 考虑应力变化速率的岩石脆性评价指标[J]. 岩土力学, 2022, 43(S1): 293-300.
[7] 刘学伟, 刘泉声, 汪志强, 刘滨, 康永水, 王传兵, . 基于格栅拱架的软岩巷道分步联合控制技术研究[J]. 岩土力学, 2022, 43(S1): 469-478.
[8] 申浩翰, 张海, 范俊锴, 徐瑞阳, 张小明. 离散单元法软件EDEM中接触半径对岩石 力学特性的影响及其应用[J]. 岩土力学, 2022, 43(S1): 580-590.
[9] 孙冰, 唐文福, 曾晟, 侯珊珊, 方耀楚, . 基于自组织临界理论的岩石声发射能量 与时间的统计分析[J]. 岩土力学, 2022, 43(9): 2525-2538.
[10] 李然, 王圣涛, 张顶立, 陈平, 潘红桂, 李奥, . 小净距隧道中夹岩对拉锚杆控制机制与工程应用[J]. 岩土力学, 2022, 43(7): 1865-1876.
[11] 王刚, 宋磊博, 刘夕奇, 包春燕, 吝曼卿, 刘广建, . 非贯通节理花岗岩剪切断裂力学特性及 声发射特征研究[J]. 岩土力学, 2022, 43(6): 1533-1545.
[12] 崔国建, 张传庆, 周辉, 卢景景, 高阳, 胡明明, 胡大伟, . 动力扰动作用下多功能岩石结构面剪切 试验装置研制与应用研究[J]. 岩土力学, 2022, 43(6): 1727-1737.
[13] 唐旭海, 许婧璟, 张怡恒, 何琦, 王正直, 张国平, 刘泉声, . 基于微观岩石力学试验和NWA13618陨石的 小行星岩石力学参数分析[J]. 岩土力学, 2022, 43(5): 1157-1163.
[14] 姜玥, 周辉, 卢景景, 高阳, . 空心圆柱砂岩真三轴试验研究[J]. 岩土力学, 2022, 43(4): 932-944.
[15] 王培涛, 刘智超, 马驰, 彭阿晓, 任奋华, 蔡美峰, . 基于Hough检测的节理岩体迹线信息快速识别 方法与应用研究[J]. 岩土力学, 2022, 43(10): 2887-2897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 飞,王 媛,倪小东. 渗流场随机性的随机有限元分析[J]. , 2009, 30(11): 3539 -3542 .
[2] 吕海波,曾召田,赵艳林,卢 浩. 膨胀土强度干湿循环试验研究[J]. , 2009, 30(12): 3797 -3802 .
[3] 刘林超,杨 骁. 基于薄层法的饱和土桩纵向振动研究[J]. , 2010, 31(1): 92 -98 .
[4] 郭 莹,王 琦. 落锥法确定粉土液限和塑限的试验研究[J]. , 2009, 30(9): 2569 -2574 .
[5] 杨自友,顾金才,杨本水,陈安敏,徐景茂. 锚杆对围岩的加固效果和动载响应的数值分析[J]. , 2009, 30(9): 2805 -2809 .
[6] 贾 宁,孟庆辉,贾 剑. 输电线路杆塔危岩威胁等级评价方法研究[J]. , 2010, 31(2): 604 -608 .
[7] 齐志刚,王翠英,王家阳. 预应力双排支护桩的计算理论研究及工程应用[J]. , 2010, 31(3): 911 -917 .
[8] 曾巧玲,张惠明,陈尊伟,于海成. 软黏土固结系数确定方法探讨[J]. , 2010, 31(7): 2083 -2087 .
[9] 申存科,迟世春,贾宇峰. 考虑颗粒破碎影响的粗粒土本构关系[J]. , 2010, 31(7): 2111 -2115 .
[10] 孙 强. “对‘两种应变软化介质组成的边坡失稳研究’的讨论”的回复[J]. , 2010, 31(7): 2351 -2352 .