岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 277-288.doi: 10.16285/j.rsm.2022.1687

• 基础理论与实验研究 • 上一篇    下一篇

钙质沉积物天然胶结结构的室内模拟方法研究

吕亚茹1,张一珂1,王媛2,苏宇宸1   

  1. 1. 河海大学 力学与材料学院,江苏 南京 211100;2. 河海大学 水利水电学院,江苏 南京 210098
  • 收稿日期:2022-03-31 接受日期:2022-05-30 出版日期:2023-11-16 发布日期:2023-11-17
  • 通讯作者: 苏宇宸,男,1991年生,博士,副教授,主要从事土体冲击特性相关的研究工作。E-mial: ysuac@hhu.edu.cn E-mail:yaru419828@163.com
  • 作者简介:吕亚茹,女,1987年生,博士,教授,主要从事中高应变率土力学理论相关的研究工作。
  • 基金资助:
    国家自然科学基金面上项目(No. 52279097,No. 51779264);江苏高校“青蓝工程”

Laboratory simulation method for natural cementation structure of calcareous sediments

LÜ Ya-ru1, ZHANG Yi-ke1, WANG Yuan2, SU Yu-chen1   

  1. 1. College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 211100, China; 2. College of Water Conservancy & Hydropower Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2022-03-31 Accepted:2022-05-30 Online:2023-11-16 Published:2023-11-17
  • Supported by:
    This work was supported by the Natural Science Foundation of China (52279097, 51779264) and the Jiangsu Province “Qing Lan Project”.

摘要: 海洋钙质沉积物存在天然胶结作用,胶结程度对其力学性质具有重要影响。因天然钙质沉积物的胶结结构具有极大的不均匀性及胶结强度低等特点,使得获取原状试样难度大,加之距大陆遥远,取样成本高,从而限制了对其物理力学特性的研究进程。因此实验室快速制备胶结试样成为有效的解决办法,分别采用物理、化学及生物主导的试验方法开展胶结试样的制备研究,发现微生物诱导碳酸钙沉淀(microbially induced carbonate precipitation,简称MICP)和脲酶诱导碳酸钙沉淀(enzyme induced carbonate precipitation,简称EICP)可以促进碳酸钙晶体产生,从而生成类似天然胶结的人工胶结试样。通过扫描电子显微镜(scanning electron microscopy,简称SEM)、X射线计算机断层扫描(computed tomography scanned by X-ray,简称X-CT)和无侧限抗压试验,发现生物主导法得到的人工胶结物的矿物成分和晶体形貌均与天然胶结钙质沉积物相同,胶结试样峰值无侧限抗压强度能够达到天然弱胶结钙质沉积物的水平,通过X-CT分析建立了胶结时间-孔隙率-胶结度-力学特性之间的定量关系,从而将上千万年的天然胶结过程缩短到实验室可重现的时间尺度,该方法将对深入研究天然胶结钙质砂及礁灰岩等的形成机制具有重要的科学价值。然而,人工胶结试样目前还存在胶结度不均匀性、无法模拟白云岩化过程等不足。

关键词: 钙质沉积物天然胶结, 人工胶结, 晶体形态, 胶结度, 应力-应变曲线

Abstract: Natural cementation is a typical characteristic of marine calcareous sediments, such as calcareous rock and soil, and the degree of cementation has an important influence on its mechanical properties. Due to the great heterogeneity and low cement strength of cemented calcareous sediments, it is difficult and expensive to obtain natural cemented calcareous sediments from the oceangoing island, limiting research on their physical and mechanical properties. To effectively solve the above problems, this paper attempted using physical, and biological dominate method in the laboratory. It was found that microbially induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP) can promote the production of calcium carbonate crystals, generating artificially cemented specimens similar to the natural ones. The mineral composition, porosity and unconfined compressive strength of the biological artificially cemented specimens were analyzed by scanning electron microscopy (SEM), computed tomography scanned by X-ray (X-CT) and unconfined compressive strength test. The mineral composition and crystal morphology of the artificial cementation were the same with the natural cemented calcareous sediments. The peak unconfined compressive strength of the artificially cemented sample could reach to the level of the natural weakly cemented calcareous sediments. The relationship between cemented time, porosity, degree of cementation and unconfined compressive strength was quantitatively determined. Therefore, the biological dominate method can shorten the natural cementation process from tens of millions of years to a period that can be reproduced in the laboratory, providing scientific value for exploring the formation mechanism of naturally cemented calcareous sand and reef limestone. However, it should be noted that there are some limitations in artificially cemented specimens, such as the degree of cementation is not fully uniform and dolomitized calcareous rock cannot be simulated.

Key words: natural cementation of calcareous sediments, artificial cementation, crystal morphology, degree of cementation, stress-strain curve

中图分类号: 

  • TU 521
[1] 李宏儒, 梁恒楠, . 不同胶结剂人工结构性黄土的力学特性差异研究[J]. 岩土力学, 2023, 44(5): 1416-1424.
[2] 张鸿朋, 马芹永, 黄坤, 马冬冬, 姚兆明, 张发, . 冻结砂不同应力路径三轴试验强度和变形分析[J]. 岩土力学, 2023, 44(5): 1477-1486.
[3] 王鹏飞, 谭文辉, 马学文, 李子建, 刘景军, 武洋帆, . 不同胶结度断层泥强度参数与含水率关系[J]. 岩土力学, 2019, 40(5): 1657-1662.
[4] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[5] 宋洪强, 左建平, 陈 岩, 黎立云, 洪紫杰, . 基于岩石破坏全过程能量特征改进的能量跌落系数[J]. 岩土力学, 2019, 40(1): 91-98.
[6] 许宏发,柏 准,齐亮亮,耿汉生,马林建,刘 斌, . 基于全应力-应变曲线的软岩蠕变寿命估计[J]. , 2018, 39(6): 1973-1980.
[7] 陈卫昌,王思敬,李 黎,张晓平,王彦兵, . 改性料礓石力学性质试验[J]. , 2018, 39(5): 1796-1804.
[8] 贾 珺,肖本林,柯长仁. 基于虚内键模型的三维均质岩石本构关系模拟[J]. , 2017, 38(3): 740-746.
[9] 许 雷,刘斯宏,鲁 洋,宋迎俊,杨 齐. 冻融循环下膨胀土物理力学特性研究[J]. , 2016, 37(S2): 167-174.
[10] 朱长歧 ,周 斌 ,刘海峰,. 胶结钙质土的室内试验研究进展[J]. , 2015, 36(2): 311-319.
[11] 张 云 ,王惠敏 ,鄢丽芬 . 击实黏土单轴拉伸特性试验研究[J]. , 2013, 34(8): 2151-2157.
[12] 仝兴华 ,韩建新 ,李术才 ,李树忱 ,杨为民 . 基于裂隙岩样的多组贯穿裂隙岩体峰后应力-应变曲线研究[J]. , 2013, 34(7): 1861-1866.
[13] 孙 强 ,薛 雷 ,朱术云 . 砂岩脆性临界破坏声发射信息应力比分析[J]. , 2012, 33(9): 2575-2580.
[14] 罗 荣,曾亚武,曹 源,黎 玲. 岩石非均质度对其力学性能的影响研究[J]. , 2012, 33(12): 3788-3794.
[15] 俞凌杰 ,张文涛 ,范 明 ,刘伟新 ,彭瑞东 . 膏岩三轴压缩试验及高温相变特征研究[J]. , 2012, 33(11): 3318-3322.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 祝云华,刘新荣,舒志乐. 对“‘深埋隧道开挖围岩失稳突变模型研究’讨论”的答复[J]. , 2009, 30(10): 3215 -3216 .
[2] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[3] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[4] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[5] 魏厚振,颜荣涛,韦昌富,吴二林,陈 盼,田慧会. 含天然气水合物沉积物相平衡问题研究综述[J]. , 2011, 32(8): 2287 -2294 .
[6] 赵跃堂,林家炜,石 磊. 冲击荷载作用下层裂问题研究[J]. , 2011, 32(S2): 122 -126 .
[7] 袁敬强 ,陈卫忠 ,谭贤君 ,王 辉. 软弱地层注浆的细观力学模拟研究[J]. , 2011, 32(S2): 653 -659 .
[8] 季毛伟 ,吴顺川 ,高永涛 ,葛林林 ,李晓静 . 双连拱隧道施工监测及数值模拟研究[J]. , 2011, 32(12): 3787 -3795 .
[9] 耿雪玉 ,于 洁 . 交通荷载下横观各向同性土的Biot固结分析[J]. , 2012, 33(5): 1366 -1374 .
[10] 尹顺德,冯夏庭,周 辉,赵洪波,李邵军. 降雨影响下滑坡变形预测的GA-NN模型研究[J]. , 2003, 24(6): 1038 -1041 .