岩土力学 ›› 2024, Vol. 45 ›› Issue (1): 87-96.doi: 10.16285/j.rsm.2022.1828

• 基础理论与实验研究 • 上一篇    下一篇

土工格栅加筋橡胶碎石动力特性试验研究

蔡永明1, 2,王志杰1, 2, 3,齐逸飞1, 2,杨广庆1, 2, 3,王贺1, 2, 3   

  1. 1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043; 2. 石家庄铁道大学 土木工程学院,河北 石家庄 050043; 3. 石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室,河北 石家庄 050043
  • 收稿日期:2022-11-22 接受日期:2023-01-16 出版日期:2024-01-10 发布日期:2024-01-10
  • 通讯作者: 王志杰,男,1985年生,博士,副教授,博士生导师,从事土工合成材料加筋路基方面的研究工作。E-mail: zwang@stdu.edu.cn E-mail:ymcai@stdu.edu.cn
  • 作者简介:蔡永明,男,1999年生,硕士研究生,主要从事土工格栅加筋土方面的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No.51709175);国家重点研发计划项目(No.2022YFE0104600);河北省高等学校科学技术研究项目(No.BJ2020045)。

Experimental study on dynamic properties of geogrid reinforced rubber gravel

CAI Yong-ming1, 2, WANG Zhi-jie1, 2, 3, QI Yi-fei1, 2, YANG Guang-qing1, 2, 3, WANG He1, 2, 3   

  1. 1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
  • Received:2022-11-22 Accepted:2023-01-16 Online:2024-01-10 Published:2024-01-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51709175), the National Key R&D Program of China (2022YFE0104600) and the Science and Technology Research Projects of Universities in Hebei Province (BJ2020045).

摘要: 土工格栅加筋是提升橡胶碎石混合料承载能力的重要方式。为探究土工格栅加筋橡胶碎石复合体动力特性及其作用机制,基于分级循环荷载作用下大型三轴试验,对3种代表性橡胶掺量碎石混合料进行不同层数土工格栅加筋,分析其累积塑性应变、滞回曲线发展演化规律,对比动弹性模量、阻尼比等动力特性关键参数,探讨耦合作用影响机制。研究结果表明:同级动应力作用下土工格栅加筋可减缓累积塑性应变的增大,随着加筋层数的增多,加筋效果更为明显;橡胶掺量增加可提升试样延性,但导致承载能大幅降低,不利于筋材加筋效果的发挥;滞回曲线形态主要取决于橡胶掺量,随着橡胶掺量增加,其形态更加饱满、倾斜,其排列更加稀疏;土工格栅加筋可提升复合体动弹性模量,并随筋材层数增多呈现出明显增长阶段;橡胶掺量对阻尼比初始值以及变化趋势产生主要影响。

关键词: 土工格栅, 橡胶碎石, 加筋层数, 动力特性, 大型三轴试验

Abstract: Geogrid is an important way to improve the bearing capacity of rubber gravel mixture. The dynamic characteristics and mechanism of geogrid-reinforced rubber gravel composites were investigated through large-scale triaxial tests. These tests involved graded cyclic loading with different layers of geogrids and were conducted using three representative rubber contents of gravel mixtures. The study focused on analyzing the development and evolution laws of cumulative plastic strain and hysteresis curves. Key parameters of dynamic characteristics, such as dynamic elastic modulus and damping ratio were compared. The influence mechanism of the coupling effect between geogrid reinforcement and rubber gravel mixtures was also discussed. The results showed that geogrid reinforcement could slow down the increase of cumulative plastic strain under the same dynamic stress. This effect became more pronounced with an increasing number of geogrid layers. Additionally, increasing the rubber content in the mixture improved the ductility of the specimen, but it greatly reduced the bearing energy of the reinforced composite. The shape of the hysteresis curve was primarily influenced by the rubber content, becoming more full, inclined, and its arrangement becoming sparser as the rubber content increased. Geogrids improved the dynamic elastic modulus of the specimens, showing a significant growth stage with an increasing number of geogrid layers. The rubber content had a major impact on the initial value and change trend of the damping ratio. These findings provide valuable insights into the behavior and performance of geogrid-reinforced rubber gravel composites under dynamic loading conditions. They contribute to the understanding of how geogrids can enhance the bearing capacity and improve the overall stability of engineering structures constructed with rubber gravel mixtures.

Key words: geogrid, rubber gravel mixture, number of reinforcement layer, dynamic characteristic, large-scale triaxial tests

中图分类号: 

  • TU411.3
[1] 黄锋, 米吉龙, 杨永浩, 董广法, 张班, 刘星辰, . 分级动荷载下土石混合体滞回曲线形态特征试验研究[J]. 岩土力学, 2024, 45(3): 674-684.
[2] 崔新壮, 姜鹏, 王艺霖, 金青, 陈璐, . 高摩阻超静定土工格栅在粗粒土夹层中的剪胀作用研究[J]. 岩土力学, 2024, 45(1): 141-152.
[3] 陈国兴, 韩勇, 梁珂, . 徐州城区黏性土与粉土的动剪切模量与阻尼比特性[J]. 岩土力学, 2023, 44(S1): 163-172.
[4] 王丽艳, 吉文炜, 陶云翔, 唐跃, 王炳辉, 蔡晓光, 张雷, . 格栅条带式加筋废旧轮胎胎面挡土墙 抗震性能试验研究[J]. 岩土力学, 2023, 44(4): 931-940.
[5] 骆赵刚, 丁选明, 欧强, 蒋春勇, 方华强, . 土工格栅加筋珊瑚砂的强度及变形特性试验研究[J]. 岩土力学, 2023, 44(4): 1053-1064.
[6] 李雪, 王滢, 高盟, 陈青生, 彭晓东, . 地震荷载作用下南海非饱和钙质砂动力特性研究[J]. 岩土力学, 2023, 44(3): 821-833.
[7] 丁扬, 熊晔, 陈孜孜, 吴晓寒, 王小波, . 灌注桩动力特性试验与数值模拟研究[J]. 岩土力学, 2022, 43(S2): 640-646.
[8] 孟凡丽, 娄桢桢, 葛威, . 长期循环荷载下卸荷粉土动力特性的试验研究[J]. 岩土力学, 2022, 43(S1): 383-388.
[9] AHMAD Hussein, MAHBOUBI Ahmad, NOORZAD Ali, HOSEINI Mohammad Hosein, . 包裹式土工格栅−砂土相互作用对条形基础承载 力−沉降特性的影响研究[J]. 岩土力学, 2022, 43(9): 2550-2567.
[10] 邓友生, 李令涛, 彭程谱, 李龙, 刘俊聪, 付云博. 静动荷载下桩网结构路基模型试验研究[J]. 岩土力学, 2022, 43(8): 2149-2156.
[11] 朱鸿鹄, 高宇新, 李元海, 倪钰菲, . 土工格栅加筋砂土中水平锚板抗拔特性试验研究[J]. 岩土力学, 2022, 43(5): 1207-1214.
[12] 王家全, 康博文, 周圆兀, 唐滢, . 填料粗粒含量对筋土界面拉拔性状的影响[J]. 岩土力学, 2022, 43(5): 1249-1260.
[13] 柴少波, 宋浪, 刘欢, 阿比尔的, 柴连增, . 酸性干湿循环下充填节理岩石劣化性能试验研究[J]. 岩土力学, 2022, 43(11): 2993-3002.
[14] 王柳江, 刘斯宏, 赵志杰, 沈超敏, 鲁洋. 土工袋界面动力特性的循环直剪试验研究[J]. 岩土力学, 2021, 42(6): 1625-1634.
[15] 洪成雨, 杨强, 赵勇, 陈登伟, 喻伟. 基于光纤传感技术的土工格栅应变监测机制研究[J]. 岩土力学, 2021, 42(6): 1755-1764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄平路,陈从新,肖国峰,林 健. 复杂地质条件下矿山地下开采地表变形规律的研究[J]. , 2009, 30(10): 3020 -3024 .
[2] 赵明华,刘小平,黄立葵. 降雨作用下路基裂隙渗流分析[J]. , 2009, 30(10): 3122 -3126 .
[3] 周火垚,施建勇. 饱和软黏土中足尺静压桩挤土效应试验研究[J]. , 2009, 30(11): 3291 -3296 .
[4] 谢凌志,周宏伟,谢和平. 盐岩CO2处置相关研究进展[J]. , 2009, 30(11): 3324 -3330 .
[5] 翟聚云,卫国祥. 干密度对非饱和膨胀土水分迁移参数的影响[J]. , 2009, 30(11): 3337 -3341 .
[6] 程 涛,晏克勤,王靖涛. 不同固结条件下黏土数值化建模的研究[J]. , 2009, 30(11): 3352 -3356 .
[7] 肖衡林,张晋锋,何 俊. 基于分布式光纤传感技术的流速测量方法研究[J]. , 2009, 30(11): 3543 -3547 .
[8] 王先军,陈明祥,常晓林,周 伟,袁子厚. Drucker-Prager系列屈服准则在稳定分析中的应用研究[J]. , 2009, 30(12): 3733 -3738 .
[9] 贾剑青,王宏图,刘大鹏,安龙奇. 隧洞地表稳定性监测及计算分析[J]. , 2009, 30(12): 3765 -3770 .
[10] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .