岩土力学 ›› 2024, Vol. 45 ›› Issue (3): 822-834.doi: 10.16285/j.rsm.2023.0424

• 岩土工程研究 • 上一篇    下一篇

跨孔CT岩溶识别方法准确性的统计学评价

刘动1, 2,林沛元3,李伟科4,黄胜3,马保松3   

  1. 1. 深圳市岩土综合勘察设计有限公司,广东 深圳 518172;2. 深圳市地质局,广东 深圳 518172; 3. 中山大学 土木工程学院,广东 广州 510275;4. 广州市设计院集团有限公司,广东 广州 510620
  • 收稿日期:2023-04-04 接受日期:2023-07-02 出版日期:2024-03-11 发布日期:2024-03-20
  • 通讯作者: 林沛元,男,1986年生,博士,教授,博士生导师,主要从事地下空间工程风险智慧评估与防控方面的研究。 E-mail: linpy23@mail.sysu.edu.cn
  • 作者简介:刘动,男,1986年生,博士,正高级工程师,主要从事岩土工程勘察、设计与科研方面的研究。E-mail: liudong04@126.com
  • 基金资助:
    国家自然科学基金资助项目(No.52008408);中山大学中央高校基本业务经费(No.22hytd06)。

Statistical evaluation of accuracy of cross-hole CT method in identifying karst caves

LIU Dong1, 2, LIN Pei-yuan3, LI Wei-ke4, HUANG Sheng3, MA Bao-song3   

  1. 1. Shenzhen Comprehensive Geotechnical Engineering Investigation & Design Co., Ltd., Shenzhen, Guangdong 518172, China; 2. Shenzhen Longgang Geology Bureau, Shenzhen, Guangdong 518172, China; 3. School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; 4. Guangzhou Design Institute Group Co., Ltd., Guangzhou, Guangdong 510620, China
  • Received:2023-04-04 Accepted:2023-07-02 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52008408) and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (22hytd06).

摘要: 岩溶地质灾害是粤港澳大湾区引擎城市广州和深圳城市建设与地下空间开发利用面临的主要挑战之一。岩溶勘探一般综合钻探与物探信息进行溶洞识别与评估。跨孔CT物探方法因操作简便,地层信息获取能力较强,近年来在大湾区岩溶勘探中广泛应用。然而,该方法识别溶洞的精度尚待定量评估。鉴于此,收集了大量的岩溶钻探与勘探对比数据,采用模型因子法对跨孔CT岩溶识别精度进行了统计分析。结果表明:该方法能够准确地探测出溶洞顶板埋深、底板埋深与洞高,平均误差不超过5%;对顶板与底板埋深的预测精度离散性非常低,仅为5%,但洞高预测精度离散性中等,超过35%。跨孔CT岩溶识别方法的精度稳定性较好,不受CT方法类型、溶洞充填情况、发射和接收点距、钻孔类型、溶洞顶板厚度、钻孔间距、验证孔距离等因素的影响。对现行跨孔CT方法进行了简单校正,使得在不增加计算复杂性的前提下,模型平均精度提高4%,离散性降低3%。最后,分析证实洞高预测模型因子服从韦布尔分布。研究成果可为岩溶区溶洞勘探与风险评估提供理论支撑。

关键词: 跨孔CT, 溶洞识别, 准确性评价, 统计分析, 风险管控

Abstract: Karst geological hazards pose a significant challenge for the urban construction and underground space development and utilization in the Guangdong-Hong Kong-Macao Greater Bay Area, especially in Guangzhou and Shenzhen. Karst exploration generally involves identifying and assessing caves through a combination of drilling and geophysical information. In recent years, the cross-hole computed tomography (CT) geophysical method has been widely used in karst exploration in the Greater Bay Area due to its ease of operation and strong ability to obtain geological information. However, the accuracy of this method in identifying caves still needs to be quantitatively evaluated. This paper collected a large amount of data on karst drilling and exploration, and the accuracy of cross-hole CT karst identification was statistically analyzed using the model factor method. The results showed that this method could accurately detect the buried depth of the cave roof, floor and height, with an average error less than 5%. The predictive accuracy of the buried depths of the cave roof and floor has very low variability, only 5%, while the predictive accuracy of the cave height has medium variability, exceeding 35%. The accuracy stability of the cross-hole CT karst identification method is satisfactory and not affected by the factors such as CT method type, cave filling condition, emission and reception point distance, drilling type, cave roof thickness, drilling distance, and verification hole distance. This paper also conducted a simple correction of the current cross-hole CT method, which increased the average accuracy of the model by 4% and reduced the variability by 3% without increasing the computational complexity. Finally, the analysis confirmed that the model factors for predicting cave height follow a Weibull distribution. The research results can provide theoretical support for karst cave exploration and risk assessment in karst areas

Key words: cross-hole CT method, karst identification, accuracy evaluation, statistical analysis, risk management

中图分类号: 

  • P 642
[1] 刘动, 林沛元, 陈贤颖, 黄胜, 马保松, . 深圳岩溶空间发育规律统计分析[J]. 岩土力学, 2022, 43(7): 1899-1912.
[2] SHARAFUTDINOV Rafael. 三轴试验中砂土刚度的统计和回归分析及应用[J]. 岩土力学, 2022, 43(10): 2873-2886.
[3] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[4] 万志辉, 戴国亮, 高鲁超, 龚维明, . 大直径后压浆灌注桩承载力和沉降的 实用计算方法研究[J]. 岩土力学, 2020, 41(8): 2746-2755.
[5] 骆顺天, 杨凡杰, 周辉, 张传庆, 王旭宏, 吕涛, 朱勇, 卢景景, . 基于统计分析的地下厂房边墙最大收敛变形 多指标预测方法 [J]. 岩土力学, 2020, 41(10): 3415-3424.
[6] 周海娟,马 刚,袁 葳,周 伟,常晓林, . 堆石颗粒压缩破碎强度的尺寸效应[J]. , 2017, 38(8): 2425-2433.
[7] 林 军,蔡国军,刘松玉,邹海峰, . 基于孔压静力触探力学分层的土体边界识别方法研究[J]. , 2017, 38(5): 1413-1423.
[8] 李 刚,张金利,杨 庆, . 不同成因沉积土物理力学指标概率统计分析[J]. , 2017, 38(12): 3565-3572.
[9] 庄海洋,张艳书,薛栩超,徐 烨,. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. , 2016, 37(S2): 561-570.
[10] 张家发,叶加兵,陈劲松,李少龙. 碎石颗粒形状测量与评定的初步研究[J]. , 2016, 37(2): 343-349.
[11] 吴秋军,王明年,刘大刚. 基于现场位移监测数据统计分析的隧道 围岩稳定性研究 [J]. , 2012, 33(S2): 359-364.
[12] 井文君 ,杨春和 ,陈 锋. 基于事故统计分析的盐岩地下油/气储库风险评价[J]. , 2011, 32(6): 1787-1794.
[13] 尹利华,王晓谋,张留俊. 天津软土土性指标概率分布统计分析[J]. , 2010, 31(S2): 462-469.
[14] 张成平,张顶立,王梦恕,李倩倩,刘胜春. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. , 2010, 31(S1): 303-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈善雄,王小刚,姜领发,戴张俊. 铁路客运专线路基面沉降特征与工程意义[J]. , 2010, 31(3): 702 -706 .
[2] 孔令伟,周葆春,白 颢,陈 伟. 荆门非饱和膨胀土的变形与强度特性试验研究[J]. , 2010, 31(10): 3036 -3042 .
[3] 吴 文,王贵宾,冒海军. 白云岩力学强度特性的孔隙影响研究[J]. , 2010, 31(12): 3709 -3714 .
[4] 岑威钧,沈长松,童建文. 深厚覆盖层上复合土工膜防渗堆石坝筑坝特性研究[J]. , 2009, 30(1): 175 -180 .
[5] 赵 奎,王晓军,刘洪兴,邬长福,张金龙. 布筋尾砂胶结充填体顶板力学性状试验研究[J]. , 2011, 32(1): 9 -14 .
[6] 张 勇,孔令伟,郭爱国,李雄威. 循环荷载下饱和软黏土的累积塑性应变试验研究[J]. , 2009, 30(6): 1542 -1548 .
[7] 孔令伟,李新明,田湖南. 砂土渗透系数的细粒效应与其状态参数关联性[J]. , 2011, 32(S2): 21 -26 .
[8] 刘裕华,陈征宙,蒋 鑫. 潮汐应力对滑坡的触发机制及与时间相关性探讨[J]. , 2012, 33(S1): 175 -182 .
[9] 马豪豪 ,刘保健 ,翁效林 ,姚贝贝 . 光纤Bragg光栅传感技术在隧道模型试验中应用[J]. , 2012, 33(S2): 185 -190 .
[10] 王汉鹏,李术才,张强勇. 分岔隧道模型试验与数值模拟超载安全度研究[J]. , 2008, 29(9): 2521 -2526 .